Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 17606-17643, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858941

RESUMO

Ring artifacts pose a major barrier to obtaining precise reconstruction in computed tomography (CT). The presence of ring artifacts complicates the use of automatic means of processing CT reconstruction results, such as segmentation, correction of geometric shapes, alignment of reconstructed volumes. Although there are numerous efficient methods for suppressing ring artifacts, many of them appear to be manual. Along with this, a large proportion of the automatic methods cope unsatisfactorily with the target task while requiring computational capacity. The current work introduces a projection data preprocessing method for suppressing ring artifacts that constitutes a compromise among the outlined aspects - automaticity, high efficiency and computational speed. Derived as the automation of the classical sinogram normalization method, the proposed method specific advantages consist in adaptability in relation to the filtered sinograms and the edge-preservation property proven within the experiments on both synthetic and real CT data. Concerning the challenging open-access data, the method has performed superior quality comparable to that of the advanced methods: it has demonstrated 70.4% ring artifacts suppression percentage (RASP) quality metric. In application to our real laboratory CT data, the proposed method allowed us to gain significant refinement of the reconstruction quality which has not been surpassed by a range of compared manual ring artifacts suppression methods.

2.
Sensors (Basel) ; 23(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514683

RESUMO

To solve the problems of spectral tomography, an X-ray optical scheme was proposed, using a crystal analyzer in Laue geometry between the sample and the detector, which allowed for the selection of predetermined pairs of wavelengths from the incident polychromatic radiation to obtain projection images. On a laboratory X-ray microtomography setup, an experiment was carried out for the first time where a mixture of micro-granules of sodium chloride NaCl, silver behenate AgC22H43O2, and lithium niobate LiNbO3 was used as a test sample to identify their spatial arrangement. The elements were chosen based on the presence of absorption edges in two of the elements in the energy range of the polychromatic spectrum of the probing radiation. The method of projection distortion correction was used to preprocess the obtained projections. To interpret the obtained reconstruction results, the segmentation method based on the analysis of joint histograms was used. This allowed us to identify each of the three substances. To compare the results obtained, additional "reference" tomographic measurements were performed: one in polychromatic and two in monochromatic (MoKα-, MoKß-lines) modes. It took three times less time for the tomographic experiment with the crystal analyzer, while the reconstruction accuracy was comparable to that of the "reference" tomography.

3.
Expert Syst Appl ; 229: 120425, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37215381

RESUMO

Computed tomography is a powerful tool for medical examination, which plays a particularly important role in the investigation of acute diseases, such as COVID-19. A growing concern in relation to CT scans is the radiation to which the patients are exposed, and a lot of research is dedicated to methods and approaches to how to reduce the radiation dose in X-ray CT studies. In this paper, we propose a novel scanning protocol based on real-time monitored reconstruction for a helical chest CT using a pre-trained neural network model for COVID-19 detection as an expert. In a simulated study, for the first time, we proposed using per-slice stopping rules based on the COVID-19 detection neural network output to reduce the frequency of projection acquisition for portions of the scanning process. The proposed method allows reducing the total number of X-ray projections necessary for COVID-19 detection, and thus reducing the radiation dose, without a significant decrease in the prediction accuracy. The proposed protocol was evaluated on 163 patients from the COVID-CTset dataset, providing a mean dose reduction of 15.1% while the mean decrease in prediction accuracy amounted to only 1.9% achieving a Pareto improvement over a fixed protocol.

4.
Nanomaterials (Basel) ; 11(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34684965

RESUMO

Detailed and accurate three-dimensional (3D) information about the morphology of hierarchically structured materials is derived from multi-scale X-ray computed tomography (XCT) and subsequent 3D data reconstruction. High-resolution X-ray microscopy and nano-XCT are suitable techniques to nondestructively study nanomaterials, including porous or skeleton materials. However, laboratory nano-XCT studies are very time-consuming. To reduce the time-to-data by more than an order of magnitude, we propose taking advantage of a monitored tomographic reconstruction. The benefit of this new protocol for 3D imaging is that the data acquisition for each projection is interspersed by image reconstruction. We demonstrate this new approach for nano-XCT data of a novel transition-metal-based materials system: MoNi4 electrocatalysts anchored on MoO2 cuboids aligned on Ni foam (MoNi4/MoO2@Ni). Quantitative data that describe the 3D morphology of this hierarchically structured system with an advanced electrocatalytically active nanomaterial are needed to tailor performance and durability of the electrocatalyst system. We present the framework for monitored tomographic reconstruction, construct three stopping rules for various reconstruction quality metrics and provide their experimental evaluation.

5.
Sensors (Basel) ; 20(23)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291287

RESUMO

This article demonstrates how a combination of well-known tools-a standard 2D detector (CCD (charge-coupled device) camera) and a crystal analyzer-can improve the multimodality of X-ray imaging and tomographic sensing. The use of a crystal analyzer allowed two characteristic lines of the molybdenum anode-Kα and Kß-to be separated from the polychromatic radiation of the conventional X-ray tube. Thus, as a result of one measurement, three radiographic projections (images) were simultaneously recorded. The projection images at different wavelengths were separated in space and registered independently for further processing, which is of interest for the spectral tomography method. A projective transformation to compensate for the geometric distortions that occur during asymmetric diffraction was used. The first experimental results presented here appear promising.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...