Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 129(2): 297-310, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584664

RESUMO

The present study compared the effects of postexercise carbohydrate plus protein (CHO+PROT) and carbohydrate (CHO)-only supplementation on muscle glycogen metabolism, anabolic cell signaling, and subsequent exercise performance. Nine endurance-trained males cycled twice to exhaustion (muscle glycogen decreased from ~495 to ~125 mmol/kg dry wt) and received either CHO only (1.2 g·kg-1·h-1) or CHO+PROT (0.8/0.4 g·kg-1·h-1) during the first 90 min of recovery. Glycogen content was similar before the performance test after 5 h of recovery. Glycogen synthase (GS) fractional activity increased after exhaustive exercise and remained activated 5 h after, despite substantial glycogen synthesis (176.1 ± 19.1 and 204.6 ± 27.0 mmol/kg dry wt in CHO and CHO+PROT, respectively; P = 0.15). Phosphorylation of GS at site 3 and site 2+2a remained low during recovery. After the 5-h recovery, cycling time to exhaustion was improved by CHO+PROT supplementation compared with CHO supplementation (54.6 ± 11.0 vs. 46.1 ± 9.8 min; P = 0.009). After the performance test, muscle glycogen was equally reduced in CHO+PROT and CHO. Akt Ser473 and p70s6k Thr389 phosphorylation was elevated after 5 h of recovery. There were no differences in Akt Ser473, p70s6k Thr389, or TSC2 Thr1462 phosphorylation between treatments. Nitrogen balance was positive in CHO+PROT (19.6 ± 7.6 mg nitrogen/kg; P = 0.04) and higher than CHO (-10.7 ± 6.3 mg nitrogen/kg; P = 0.009). CHO+PROT supplementation during exercise recovery improved subsequent endurance performance relative to consuming CHO only. This improved performance after CHO+PROT supplementation could not be accounted for by differences in glycogen metabolism or anabolic cell signaling, but may have been related to differences in nitrogen balance.NEW & NOTEWORTHY Endurance athletes competing consecutive days need optimal dietary intake during the recovery period. We report that coingestion of protein and carbohydrate soon after exhaustive exercise, compared with carbohydrate only, resulted in better performance the following day. The better performance after coingestion of protein and carbohydrate was not associated with a higher rate of glycogen synthesis or activation of anabolic signaling compared with carbohydrate only. Importantly, nitrogen balance was positive after coingestion of protein and carbohydrate, which was not the case after intake of carbohydrate only, suggesting that protein synthesis contributes to the better performance the following day.


Assuntos
Carboidratos da Dieta , Resistência Física , Proteínas Quinases Ativadas por AMP/metabolismo , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/metabolismo , Glicogênio/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Fosforilação
2.
Arch Physiol Biochem ; 124(2): 119-130, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28862046

RESUMO

We hypothesised that skeletal muscles of healthy young people have a large variation in oxidative capacity and fibre-type composition, and aimed therefore to investigate glucose metabolism in biopsies and myotubes isolated from musculus vastus lateralis from healthy males with varying degrees of maximal oxygen uptake. Trained and intermediary trained subjects showed higher carbohydrate oxidation in vivo. Fibre-type distribution in biopsies and myotubes did not differ between groups. There was no correlation between fibre-type I expression in biopsies and myotubes. Myotubes from trained had higher deoxyglucose accumulation and fractional glucose oxidation (glucose oxidation relative to glucose uptake), and were also more sensitive to the suppressive action of acutely added oleic acid to the cells. Despite lack of correlation of fibre types between skeletal muscle biopsies and cultured cells, myotubes from trained subjects retained some of their phenotypes in vitro with respect to enhanced glucose metabolism and metabolic flexibility.


Assuntos
Exercício Físico , Glucose/metabolismo , Estilo de Vida Saudável , Resistência à Insulina , Fibras Musculares Esqueléticas/metabolismo , Cooperação do Paciente , Comportamento Sedentário , Adulto , Biópsia , Radioisótopos de Carbono , Células Cultivadas , Desoxiglucose/metabolismo , Ácidos Graxos não Esterificados/efeitos adversos , Regulação da Expressão Gênica , Humanos , Masculino , Fibras Musculares Esqueléticas/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Noruega , Ácido Oleico/efeitos adversos , Consumo de Oxigênio , Músculo Quadríceps , Adulto Jovem
3.
J Neurol ; 260(7): 1822-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23483214

RESUMO

The present study tested the hypothesis that lower body progressive resistance training (PRT) increases the neural drive expressed as surface electromyographical (EMG) activity in patients with multiple sclerosis (MS). The study was a randomised controlled trial (RCT) including a 12-week follow up period. Thirty-eight MS patients were randomized to an exercise group (n = 19) or a control group (n = 19). During the intervention period, the exercise group performed a 12-week supervised lower body PRT program, whereas the control group maintained their usual daily activity level. After the 12 week intervention period, the exercise group were encouraged to continue training on their own for a 12-week follow up period, while the control group completed the 12-week supervised PRT program. Surface EMG was recorded from vastus lateralis, rectus femoris and semitendinosus during maximal isometric knee extension and knee flexion, before and after the intervention and at follow up. From the recordings, the area under the rectified, low-pass filtered EMG signal (integrated EMG, iEMG) was calculated. Muscle strength was expressed as the angular impulse (AI) and was measured during the same period as the iEMG. After PRT significant improvements for iEMG of vastus lateralis and rectus femoris during maximal knee extension and for semitendinosus during maximal knee flexion and for AI during both maximal knee extension and flexion were found in the exercise group, when compared to the control group. When compared to the post values, all effects, except for AI during knee flexion, were maintained at follow up in the exercise group. When the control group was exposed to PRT, a similar pattern of improvements were found, albeit not all improvements were significant. In conclusion twelve weeks of intense PRT of the lower extremities improved the neural drive expressed as maximal surface EMG activity in patients with MS, with effects persisting 12 weeks after the intervention. The study was registered at clinicalTrials.gov, Protocol no. NCT00381576.


Assuntos
Encéfalo/fisiopatologia , Esclerose Múltipla/reabilitação , Músculo Esquelético/fisiopatologia , Treinamento Resistido , Adulto , Eletromiografia , Feminino , Humanos , Contração Isométrica/fisiologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Vias Neurais/fisiopatologia , Resultado do Tratamento
4.
Physiother Theory Pract ; 27(8): 548-56, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21722067

RESUMO

It was hypothesised that increased exercise capacity is related to improved quality of life (QoL) in patients with cystic fibrosis (CF). A 12-week individually tailored unsupervised aerobic exercise programme was offered to 42 patients with CF. At the start and at the end of the exercise programme, data on QoL, current exercise habits and preferences, anthropometric data, exercise test, and lung function test were collected. Adherence was observed by a heart rate (HR) monitor. A total of 24 patients accepted to be enrolled in the exercise programme and 14 completed the programme. Another 14 patients declined to be enrolled in the exercise programme but completed the Cystic Fibrosis Questionnaire for Adolescents and Adults (CFQ-R 14+). Four patients did not want to participate at all. The 14 patients completing the exercise programme had a significantly increased VO(2max), but they showed no significant change in total QoL score. However, the scores in the domain of treatment burden and emotional functioning increased significantly. There was no significant difference in QoL and lung function between patients participating in the exercise programme (n = 24) and non-participants (n = 14). A 12-week individually tailored unsupervised aerobic exercise programme where HR monitors were used significantly affected VO(2max). Improvement in QoL could not be demonstrated in this study.


Assuntos
Fibrose Cística/terapia , Tolerância ao Exercício , Exercício Físico , Qualidade de Vida , Adolescente , Adulto , Antropometria , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Adulto Jovem
5.
Med Sci Sports Exerc ; 36(5): 821-9, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15126716

RESUMO

PURPOSE: Muscle damage and soreness are well-known adverse effects of running, especially when covering distances in excess of habitual running activity. Loss of Ca homeostasis is hypothesized to initiate the development of exercise-induced muscle damage. We tested the hypothesis that the Ca content of vastus lateralis muscle increases after a 10- or 20-km run and studied the relations between Ca accumulation and running distance, endurance training, and fiber type distribution. METHODS: Twenty-four healthy young men and women were divided into two groups who ran either 10 or 20 km. Muscle biopsies and blood samples were collected before, immediately after, and in the days after the run. RESULTS: : The Ca content in muscle biopsies increased from 0.70 +/- 0.02 to 0.93 +/- 0.04 micromol x g wet weight after the 20-km run (P < 0.001) and was still significantly elevated at 4 and 48 h after the run. In the 10-km runners, however, no significant increase in Ca was found (0.81 +/- 0.03 vs 0.91 +/- 0.06 micromol x g wet weight, P = 0.08). Plasma levels of lactate dehydrogenase and creatine kinase increased after both running distances, the increase being greatest after the 20-km run. Eight of the 10-km runners completed an endurance-training program and subsequently repeated the 10-km run. The response to a new 10-km run with regard to muscle Ca content and parameters of muscle damage was essentially unchanged by training. CONCLUSIONS: The degree of muscle damage depends on running distance, and a significant Ca accumulation in muscle is seen after 20 km. Ten weeks of endurance training does not influence Ca homeostasis and muscle damage after 10-km running.


Assuntos
Cálcio/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Corrida/fisiologia , Análise de Variância , Biópsia , Creatina Quinase/sangue , Eletrólitos/metabolismo , Feminino , Homeostase , Humanos , L-Lactato Desidrogenase/sangue , Modelos Lineares , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/enzimologia , Educação Física e Treinamento
6.
J Appl Physiol (1985) ; 92(5): 1891-8, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11960939

RESUMO

During prolonged exercise, changes in the ionic milieu in and surrounding the muscle fibers may lead to fatigue or damage of the muscle and thereby impair performance. In 10 male subjects, we investigated the effects of 100 km running on muscle and plasma electrolyte contents, muscle Na+ -K+ pump content, and plasma concentrations of creatine kinase (CK) and lactate dehydrogenase (LDH). After completion of a 100-km run, significant increases were found in plasma K+ (from 4.0 +/- 0.1 to 5.5 +/- 0.2 mM, P < 0.001), muscle Na+ -K+ pump content (from 334 +/- 11 to 378 +/- 17 pmol/g, P < 0.05), and total muscle Ca2+ content (from 0.84 +/- 0.03 to 1.02 +/- 0.04 micromol/g, P < 0.001). There was also a large increase in the plasma levels of the muscle-specific enzymes CK and LDH, which reached peak values at the end of the run and lasted several days after the run, indicating that a significant degree of muscle membrane leakage was present. The simultaneous occurrence of raised cellular Ca2+ content and muscle membrane leakage supports the theory that Ca2+ plays a role in the initiation of degenerative processes in muscles after severe exercise.


Assuntos
Cálcio/metabolismo , Músculo Esquelético/metabolismo , Esforço Físico/fisiologia , Corrida/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Adulto , Biópsia , Volume Sanguíneo/fisiologia , Cálcio/análise , Membrana Celular/fisiologia , Creatina Quinase/sangue , Humanos , L-Lactato Desidrogenase/sangue , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/química , Consumo de Oxigênio/fisiologia , Potássio/análise , Potássio/metabolismo , Sódio/análise , Sódio/metabolismo , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...