Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1101622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873372

RESUMO

Cardiovascular events are the primary cause of death among dialysis patients. While arteriovenous fistulas (AVFs) are the access of choice for hemodialysis patients, AVF creation can lead to a volume overload (VO) state in the heart. We developed a three-dimensional (3D) cardiac tissue chip (CTC) with tunable pressure and stretch to model the acute hemodynamic changes associated with AVF creation to complement our murine AVF model of VO. In this study, we aimed to replicate the hemodynamics of murine AVF models in vitro and hypothesized that if 3D cardiac tissue constructs were subjected to "volume overload" conditions, they would display fibrosis and key gene expression changes seen in AVF mice. Mice underwent either an AVF or sham procedure and were sacrificed at 28 days. Cardiac tissue constructs composed of h9c2 rat cardiac myoblasts and normal adult human dermal fibroblasts in hydrogel were seeded into devices and exposed to 100 mg/10 mmHg pressure (0.4 s/0.6 s) at 1 Hz for 96 h. Controls were exposed to "normal" stretch and experimental group exposed to "volume overload". RT-PCR and histology were performed on the tissue constructs and mice left ventricles (LVs), and transcriptomics of mice LVs were also performed. Our tissue constructs and mice LV both demonstrated cardiac fibrosis as compared to control tissue constructs and sham-operated mice, respectively. Gene expression studies in our tissue constructs and mice LV demonstrated increased expression of genes associated with extracellular matrix production, oxidative stress, inflammation, and fibrosis in the VO conditions vs. control conditions. Our transcriptomics studies demonstrated activated upstream regulators related to fibrosis, inflammation, and oxidative stress such as collagen type 1 complex, TGFB1, CCR2, and VEGFA and inactivated regulators related to mitochondrial biogenesis in LV from mice AVF. In summary, our CTC model yields similar fibrosis-related histology and gene expression profiles as our murine AVF model. Thus, the CTC could potentially play a critical role in understanding cardiac pathobiology of VO states similar to what is present after AVF creation and may prove useful in evaluating therapies.

2.
J Vasc Access ; 24(1): 124-132, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34144670

RESUMO

BACKGROUND: Arteriovenous fistula (AVF) creation may negatively affect cardiac structure and function and impact cardiovascular mortality. The objective of this study was to develop and characterize the cardiac changes following AVF creation in a murine AVF model. METHODS: AVFs were constructed using the carotid artery and jugular vein in C57BL/6 mice. Sham-operated AVF mice served as the control group. 2D-echocardiography was performed prior to AVF creation (baseline) and at 7 and 21 days after creation in AVF and sham-operated mice. Picrosirius red was used to stain the left ventricle for collagen production. RESULTS: The cardiac output (CO), left ventricular end diastolic (LVEDD) and systolic (LVESD) diameter, and end-diastolic (LVEDV) and systolic (LVESV) volume was significantly increased at 7 and 21 days in AVF compared to sham-operated mice. There was also a significant increase in CO, LVEDD, LVESD, LVEDV, and LVESV from baseline to 21 days within the AVF group, but not the sham-operated mice. There was a significant decrease in ejection fraction and fractional shortening at 21 days in AVF compared to sham-operated mice. Picrosirius red was significantly more prominent around both the perivascular and interstitial areas of the cardiac tissue from AVF mice compared to sham-operated AVF mice at 21 days. CONCLUSIONS: The creation of an AVF in our murine model leads to cardiac changes such as increased cardiac output, left ventricular dilation, and cardiac fibrosis, while showing reductions of ejection fraction and fractional shortening.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Camundongos , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Coração , Fístula Arteriovenosa/diagnóstico por imagem , Fístula Arteriovenosa/etiologia , Derivação Arteriovenosa Cirúrgica/efeitos adversos
3.
Molecules ; 27(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35684423

RESUMO

Limited tissue selectivity and targeting of anticancer therapeutics in systemic administration can produce harmful side effects in the body. Various polymer nano-vehicles have been developed to encapsulate therapeutics and prevent premature drug release. Dually responsive polymeric vesicles (polymersomes) assembled from temperature-/pH-sensitive block copolymers are particularly interesting for the delivery of encapsulated therapeutics to targeted tumors and inflamed tissues. We have previously demonstrated that temperature-responsive poly(N-vinylcaprolactam) (PVCL)-b-poly(dimethylsiloxane) (PDMS)-b-PVCL polymersomes exhibit high loading efficiency of anticancer therapeutics in physiological conditions. However, the in-vivo toxicity of these polymersomes as biocompatible materials has not yet been explored. Nevertheless, developing an advanced therapeutic nanocarrier must provide the knowledge of possible risks from the material's toxicity to support its future clinical research in humans. Herein, we studied pH-induced degradation of PVCL10-b-PDMS65-b-PVCL10 vesicles in-situ and their dually (pH- and temperature-) responsive release of the anticancer drug, doxorubicin, using NMR, DLS, TEM, and absorbance spectroscopy. The toxic potential of the polymersomes was evaluated in-vivo by intravenous injection (40 mg kg-1 single dose) of PVCL10-PDMS65-PVCL10 vesicles to mice. The sub-acute toxicity study (14 days) included gravimetric, histological, and hematological analyses and provided evidence for good biocompatibility and non-toxicity of the biomaterial. These results show the potential of these vesicles to be used in clinical research.


Assuntos
Portadores de Fármacos , Polímeros , Animais , Materiais Biocompatíveis , Caprolactama/análogos & derivados , Dimetilpolisiloxanos , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Camundongos , Polímeros/química
4.
Theranostics ; 11(6): 2742-2754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456570

RESUMO

Aim: Immune responsive 12/15 lipoxygenase (12/15LOX)-orchestrate biosynthesis of essential inflammation-resolution mediators during acute inflammatory response in post-myocardial infarction (MI). Lack of 12/15LOX dampens proinflammatory mediator 12-(S)-hydroxyeicosatetraenoic acid (12-(S)-HETE), improves post-MI survival, through the biosynthesis of endogenous mediators epoxyeicosatrienoic acids (EETs; cypoxins) to resolve post-MI inflammation. However, the mechanism that amplifies cypoxins-directed cardiac repair in acute heart failure (AHF) and chronic HF (CHF) remains of interest in MI-directed renal inflammation. Therefore, we determined the role of EETs in macrophage-specific receptor activation in facilitating cardiac repair in 12/15LOX deficient mice experiencing HF. Methods and Results: Risk-free young adult (8 -12 week-old) male C57BL/6J wild-type mice (WT; n = 43) and 12/15LOX-/- mice (n = 31) were subjected to permanent coronary artery ligation and monitored at day (d)1, d5 (as acute HF), and d28 to d56 (8 weeks; chronic HF) post-surgery maintaining no-MI mice that served as d0 naïve controls. Left ventricle (LV) infarcted area of 12/15LOX-/- mice displayed an increase in expression of prostanoid receptor EP4 along with monocyte chemoattractant protein-1 CCL2 in AHF and CHF. The transcriptome analysis of isolated leukocytes (macrophages/neutrophils) from infarcted LV revealed a higher expression of EP4 on reparative macrophages expressing MRC-1 in 12/15LOX-/- mice. Deletion of 12/15LOX differentially modulated the miRNA levels, downregulating miR-23a-3p (~20 fold; p < 0.05) and upregulating miR-125a-5p (~160 fold; p < 0.05) in AHF which promoted polarization of the macrophages towards reparative phenotype. Furthermore, 12/15LOX deletion markedly attenuated renal inflammation with reduced levels of NGAL and KIM-1 and apoptotic markers in the kidney during CHF. Conclusion: In risk-free mice during physiological cardiac repair, absence of 12/15LOX promoted reparative macrophages with marked activation of EP4 signaling thereby improving post-MI survival and limiting renal inflammation in acute and advanced HF. The future studies are warranted to advance the role of EETs in macrophage receptor biology.


Assuntos
Insuficiência Cardíaca/metabolismo , Lipoxigenase/deficiência , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Apoptose/fisiologia , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Doença Crônica , Regulação para Baixo/fisiologia , Coração/fisiologia , Ventrículos do Coração/metabolismo , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Neutrófilos/metabolismo , Regulação para Cima/fisiologia , Remodelação Ventricular/fisiologia
5.
Biomacromolecules ; 20(10): 3989-4000, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31503464

RESUMO

Despite being one of the most potent chemotherapeutics, doxorubicin (DOX) facilitates cardiac toxicity by irreversibly damaging the cardiac muscle as well as severely dysregulating the immune system and impairing the resolution of cardiac inflammation. Herein, we report synthesis and aqueous self-assembly of nanosized polymersomes from temperature-responsive poly(3-methyl-N-vinylcaprolactam)-block-poly(N-vinylpyrrolidone) (PMVC-PVPON) diblock copolymers and demonstrate their potential to minimize DOX cardiotoxicity compared to liposomal DOX. RAFT polymerization of vinylpyrrolidone and 3-methyl-N-vinylcaprolactam, which are structurally similar monomers but have drastically different hydrophobicity, allows decreasing the cloud point of PMVCm-PVPONn copolymers below 20 °C. The lower critical solution temperature (LCST) of the PMVC58-PVPONn copolymer varied from 19.2 to 18.6 and to 15.2 °C by decreasing the length of the hydrophilic PVPONn block from n = 98 to n = 65 and to n = 20, respectively. The copolymers assembled into stable vesicles at room temperature when PVPON polymerization degrees were 65 and 98. Anticancer drug DOX was entrapped with high efficiency into the aqueous PMVC58-PVPON65 polymersomal core surrounded by the hydrophobic temperature-sensitive PMVC shell and the hydrophilic PVPON corona. Unlike many liposomal, micellar, or synthetic drug delivery systems, these polymersomes exhibit an exceptionally high loading capacity of DOX (49%) and encapsulation efficiency (95%) due to spontaneous loading of the drug at room temperature from aqueous DOX solution. We also show that C57BL/6J mice injected with the lethal dose of DOX at 15 mg kg-1 did not survive the 14 day treatment, resulting in 100% mortality. The DOX-loaded PMVC58-PVPON65 polymersomes did not cause any mortality in mice indicating that they can be used for successful DOX encapsulation. The gravimetric analyses of the animal organs from mice treated with liposome-encapsulated DOX (Lipo-DOX) and PMVC58-PVPON65 polymersomes (Poly-DOX) revealed that the Lipo-DOX injection caused some toxicity manifesting as decreased body weight compared to Poly-DOX and saline control. Masses of the left ventricle of the heart, lung, and spleen reduced in the Lipo-DOX-treated mice compared to the nontoxic saline control, while no significant decrease of those masses was observed for the Poly-DOX-treated mice. Our results provide evidence for superior stability of synthetic polymersomes in vivo and show promise for the development of next-generation drug carriers with minimal side effects.


Assuntos
Antineoplásicos/química , Cardiotoxicidade/prevenção & controle , Doxorrubicina/química , Polímeros/química , Pirrolidinonas/química , Animais , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimerização , Temperatura
6.
J Mol Cell Cardiol ; 118: 70-80, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29526491

RESUMO

12/15 lipoxygenase (LOX) directs inflammation and lipid remodeling. However, the role of 12/15LOX in post-myocardial infarction (MI) left ventricular remodeling is unclear. To determine the role of 12/15LOX, 8-12 week-old C57BL/6 J wild-type (WT; n = 93) and 12/15LOX-/- (n = 97) mice were subjected to permanent coronary artery ligation and monitored at day (d)1 and d5 post-operatively. Post-MI d28 survival was measured in male and female mice. No-MI surgery mice were maintained as d0 naïve controls. 12/15LOX-/- mice exhibited higher survival rates with lower cardiac rupture and improved LV function as compared with WT post-MI. Compared to WT, neutrophils and macrophages in 12/15LOX-/- mice were polarized towards N2 and M2 phenotypes, respectively, with increased of expression mrc-1, ym-1, and arg-1 post-MI. 12/15LOX-/- mice exhibited lower levels of pro-inflammatory 12-(S)-hydroperoxyeicosatetraenoic acid (12(S)-HETE) and higher CYP2J-derived epoxyeicosatrienoic acids (EETs) levels. CYP2J-derived 5,6-, 8,9-, 11,12-, and 14,15-EETs activated macrophage-specific hemeoxygenase (HO)-1 marked with increases in F4/80+/Ly6Clow and F4/80+/CD206high cells at d5 post-MI in 12/15LOX-/- mice. In contrast, inhibition of HO-1 led to total mortality in 12/15LOX-/- mice by post-MI d5. 12/15LOX-/- mice exhibited reduced collagen density and lower α-smooth muscle actin (SMA) expression at d5 post-MI, indicating delayed or limited fibroblast-to-myofibroblast differentiation. In conclusion, genetic deletion of 12/15LOX reduces 12(S)-HETE and activates CYP2J-derived EETs to promote effective resolution of inflammation post-MI leading to reduced cardiac rupture, improved LV function, and better survival.


Assuntos
Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Deleção de Genes , Inflamação/enzimologia , Inflamação/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Animais , Ácido Araquidônico/metabolismo , Polaridade Celular , Colágeno/metabolismo , Feminino , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Heme Oxigenase-1/metabolismo , Inflamação/complicações , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/fisiopatologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Neutrófilos/metabolismo , Fenótipo , Análise de Sobrevida , Remodelação Ventricular
7.
Sci Signal ; 11(520)2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511119

RESUMO

Inflammation promotes healing in myocardial infarction but, if unresolved, leads to heart failure. To define the inflammatory and resolving responses, we quantified leukocyte trafficking and specialized proresolving mediators (SPMs) in the infarcted left ventricle and spleen after myocardial infarction, with the goal of distinguishing inflammation from its resolution. Our data suggest that the spleen not only served as a leukocyte reservoir but also was the site where SPMs were actively generated after coronary ligation in mice. Before myocardial infarction, SPMs were more abundant in the spleen than in the left ventricle. At day 1 after coronary ligation, the spleen was depleted of leukocytes, a phenomenon that was associated with greater numbers of leukocytes in the infarcted left ventricle and increased generation of SPMs at the same site, particularly resolvins, maresin, lipoxins, and protectin. In addition, the infarcted left ventricle showed increased expression of genes encoding lipoxygenases and enhanced production of SPMs generated by these enzymes. We found that macrophages were necessary for SPM generation. The abundance of SPMs in the spleen before myocardial infarction and increased SPM concentrations in the infarcted left ventricle within 24 hours after myocardial infarction were temporally correlated with the resolution of inflammation. Thus, the acute inflammatory response coincided with the active resolving phase in post-myocardial infarction and suggests that further investigation into macrophage-derived SPMs in heart failure is warranted.


Assuntos
Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Leucócitos/metabolismo , Baço/metabolismo , Animais , Ecocardiografia , Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Inflamação/genética , Leucócitos/patologia , Metabolismo dos Lipídeos/genética , Lipoxinas/metabolismo , Lipoxigenase/genética , Lipoxigenase/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Baço/patologia
8.
Anal Bioanal Chem ; 410(7): 1965-1976, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29411084

RESUMO

Myocardial infarction (MI) and subsequent progressive heart failure pathology is the major cause of death worldwide; however, the mechanism of this pathology remains unclear. The present work aimed at testing the hypothesis whether the inflammatory response is superimposed with the formation of bioactive lipid resolving molecules at the site of the injured myocardium in acute heart failure pathology post-MI. In this view, we used a robust permanent coronary ligation model to induce MI, leading to decreased contractility index with marked wall thinning and necrosis of the infarcted left ventricle. Then, we applied mass spectrometry imaging (MSI) in positive and negative ionization modes to characterize the spatial distribution of left ventricle lipids in the infarcted myocardium post-MI. After micro-extraction, liquid chromatography coupled to tandem mass spectrometry was used to confirm the structures of the imaged lipids. Statistical tools such as principal component analysis were used to establish a comprehensive visualization of lipid profile changes in MI and no-MI hearts. Resolving bioactive molecules such as resolvin (Rv) D1, RvD5, RvE3, 17-HDHA, LXA4, and 18-HEPE were detected in negative ion mode MSI, whereas phosphatidyl cholines (PC) and oxidized derivatives thereof were detected in positive ion mode. MSI-based analysis demonstrated a significant increase in resolvin bioactive lipids with comprehensive lipid remodeling at the site of infarction. These results clearly indicate that infarcted myocardium is the primary location of inflammation-resolution pathomechanics which is critical for resolution of inflammation and heart failure pathophysiology. Graphical abstract Applied scheme to determine comprehensive lipidomics in failing and non-failing heart.


Assuntos
Lipídeos/análise , Infarto do Miocárdio/patologia , Miocárdio/patologia , Animais , Ácidos Docosa-Hexaenoicos/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Coração/fisiopatologia , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos , Masculino , Espectrometria de Massas/métodos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 314(2): H255-H267, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101178

RESUMO

Heart failure (HF) secondary to myocardial infarction (MI) is linked to kidney complications that comprise cellular, structural, functional, and survival indicators. However, HF research is focused on left ventricular (LV) pathology. Here, we determined comprehensive functional analysis of the LV using echocardiography in transition from acute heart failure (AHF) to progressive chronic heart failure (CHF) pathology and developed a histological compendium of the cardiosplenic and cardiorenal networks in pathological remodeling. In surgically induced MI using permanent coronary ligation, the LV dysfunction is pronounced, with myocardium necrosis, wall thinning, and 20-30% LV rupture events that indicated AHF and CHF pathological remodeling in C57BL/6 male mice (2-4 mo old, n = 50). Temporal LV function analysis indicated that fractional shortening and strain are reduced from day 1 to day 5 in AHF and sustained to advance to CHF from day 28 to day 56 compared with naïve control mice ( n = 6). During the transition of AHF ( day 1 to day 5) to advanced CHF ( day 28 to day 56), histological and cellular changes in the spleen were definite, with bimodal inflammatory responses in kidney inflammatory biomarkers. Likewise, there was a unidirectional, progressive, and irreversible deposition of compact collagen in the LV along with dynamic changes in the cardiosplenic and cardiorenal networks post-MI. The renal histology and injury markers suggested that cardiac injury triggers irreversible dysregulation that actively alters the cardiosplenic and cardiorenal networks. In summary, the novel strategies or pathways that modulate comprehensive cardiosplenic and cardiorenal networks in AHF and CHF would be effective approaches to study either cardiac repair or cardiac pathology. NEW & NOTEWORTHY The present compendium shows irreversible ventricular dysfunction as assessed by temporal echocardiography while histological and structural measurements of the spleen and kidney added a novel direction to study cardiosplenic and cardiorenal networks in heart failure pathology. Therefore, the consideration of systems biology and integrative approach is essential to develop novel treatments.


Assuntos
Síndrome Cardiorrenal/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Coração/fisiopatologia , Rim/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Baço/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda , Animais , Síndrome Cardiorrenal/diagnóstico por imagem , Síndrome Cardiorrenal/metabolismo , Síndrome Cardiorrenal/patologia , Doença Crônica , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Ecocardiografia , Fibrose , Coração/diagnóstico por imagem , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/metabolismo , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Baço/metabolismo , Baço/patologia , Fatores de Tempo , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Remodelação Ventricular
10.
Am J Physiol Heart Circ Physiol ; 314(2): H160-H169, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28986357

RESUMO

Maintaining a balance of ω-6 and ω-3 fatty acids is essential for cardiac health. Current ω-6 and ω-3 fatty acids in the American diet have shifted from the ideal ratio of 2:1 to almost 20:1; while there is a body of evidence that suggests the negative impact of such a shift in younger organisms, the underlying age-related metabolic signaling in response to the excess influx of ω-6 fatty acids is incompletely understood. In the present study, young (6 mo old) and aging (≥18 mo old) mice were fed for 2 mo with a ω-6-enriched diet. Excess intake of ω-6 enrichment decreased the total lean mass and increased nighttime carbohydrate utilization, with higher levels of cardiac cytokines indicating low-grade chronic inflammation. Dobutamine-induced stress tests displayed an increase in PR interval, a sign of an atrioventricular defect in ω-6-fed aging mice. Excess ω-6 fatty acid intake in aging mice showed decreased 12-lipoxygenase with a concomitant increase in 15-lipoxygenase levels, resulting in the generation of 15( S)-hydroxyeicosatetraenoic acid, whereas cyclooxygenase-1 and -2 generated prostaglandin E2, leukotriene B4, and thromboxane B2. Furthermore, excessive ω-6 fatty acids led to dysregulated nuclear erythroid 2-related factor 2/antioxidant-responsive element in aging mice. Moreover, ω-6 fatty acid-mediated changes were profound in aging mice with respect to the eicosanoid profile while minimal changes were observed in the size and shape of cardiomyocytes. These findings provide compelling evidence that surplus consumption of ω-6 fatty acids, coupled with insufficient intake of ω-3 fatty acids, is linked to abnormal changes in ECG. These manifestations contribute to functional deficiencies and expansion of the inflammatory mediator milieu during later stages of aging. NEW & NOTEWORTHY Aging has a profound impact on the metabolism of fatty acids to maintain heart function. The excess influx of ω-6 fatty acids in aging perturbed electrocardiography with marked signs of inflammation and a dysregulated oxidative-redox balance. Thus, the quality and quantity of fatty acids determine the cardiac pathology and energy utilization in aging.


Assuntos
Envelhecimento/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Arritmias Cardíacas/induzido quimicamente , Eletrocardiografia , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos Ômega-6/toxicidade , Sistema de Condução Cardíaco/efeitos dos fármacos , Inflamação/induzido quimicamente , Potenciais de Ação/efeitos dos fármacos , Fatores Etários , Ração Animal , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Doença Crônica , Citocinas/genética , Citocinas/metabolismo , Ácidos Graxos Ômega-6/administração & dosagem , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Estado Nutricional , Medição de Risco , Fatores de Risco
11.
Sci Rep ; 7(1): 9999, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855632

RESUMO

Following myocardial infarction (MI), overactive inflammation remodels the left ventricle (LV) leading to heart failure coinciding with reduced levels of 15-epi-Lipoxin A4 (15-epi LXA4). However, the role of 15-epi LXA4 in post-MI acute inflammatory response and resolving phase is unclear. We hypothesize that liposomal fusion of 15-epi-LXA4 (Lipo-15-epi-LXA4) or free 15-epi-LXA4 will expedite the resolving phase in post-MI inflammation. 8 to 12-week-old male C57BL/6 mice were subjected to permanent coronary artery ligation. Lipo-15-epi-LXA4 or 15-epi-LXA4 (1 µg/kg/day) was injected 3 hours post-MI for (d)1 or continued daily till d5. 15-epi-LXA4 activated formyl peptide receptor (FPR2) and GPR120 on alternative macrophages but inhibited GPR40 on classical macrophages in-vitro. The 15-epi-LXA4 injected mice displayed reduced LV and lung mass to body weight ratios and improved ejection fraction at d5 post-MI. In the acute phase of inflammation-(d1), 15-epi-LXA4 primes neutrophil infiltration with a robust increase of Ccl2 and FPR2 expression. During the resolving phase-(d5), 15-epi-LXA4 initiated rapid neutrophils clearance with persistent activation of FPR2 in LV. Compared to MI-control, 15-epi-LXA4 injected mice showed reduced renal inflammation along with decreased levels of ngal and plasma creatinine. In summary, 15-epi-LXA4 initiates the resolving phase early to discontinue inflammation post-MI, thereby reducing LV dysfunction.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Lipoxinas/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Animais , Modelos Animais de Doenças , Ventrículos do Coração/patologia , Pulmão/patologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Resultado do Tratamento , Remodelação Ventricular/efeitos dos fármacos
12.
Am J Physiol Heart Circ Physiol ; 313(1): H89-H102, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28411230

RESUMO

The metabolic transformation of fatty acids to form oxylipids using 12/15-lipoxygenase (LOX) can promote either resolving or nonresolving inflammation. However, the mechanism of how 12/15-LOX interacts with polyunsaturated fatty acids (PUFA) in postmyocardial infarction (post-MI) healing is unclear. Here, we reported the role of 12/15-LOX in post-MI cardiac remodeling in a PUFA [10% (wt/wt), 22 kcal]-enriched environment. Wild-type (WT; C57BL/6J) and 12/15-LOX-null (12/15-LOX-/-) male mice of 8-12 wk of age were fed a PUFA-enriched diet for 1 mo and subjected to permanent coronary artery ligation. Post-MI mice were monitored for day 1 or until day 5 along with standard diet-fed MI controls. No-MI surgery mice served as naïve controls. PUFA-fed WT and 12/15-LOX-/- mice improved ejection fraction and reduced lung edema greater than WT mice at day 5 post-MI (P < 0.05). Post-MI, neutrophil density was decreased in PUFA-fed WT and 12/15-LOX-/- mice at day 1 (P < 0.05). Deletion of 12/15-LOX in mice led to increased cytochrome P-450-derived bioactive lipid mediator epoxyeicosatrienoic acids (EETs), i.e., 11,12-EpETrE and 14,15-EpETrE, which were further enhanced by acute PUFA intake post-MI. Macrophage density was decreased in WT + PUFA and 12/15-LOX-/- mice compared with their respective standard diet-fed WT controls at day 5 post-MI. 12/15-LOX-/- + PUFA mice displayed an increased expression of chemokine (C-C motif) ligand 2 and reparative macrophages markers (Ym-1, Mrc-1, and Arg-1, all P < 0.05) in the infarcted area. Furthermore, 12/15-LOX-/- mice, with or without PUFA, showed reduced collagen deposition at day 5 post-MI compared with WT mice. In conclusion, deletion of 12/15-LOX and short-term exposure of PUFA promoted leukocyte clearance, thereby limiting cardiac remodeling and promoting an effective resolution of inflammation.NEW & NOTEWORTHY This study determined that 1) deletion of 12/15-lipoxygenase (LOX) promotes the generation of epoxyeicosatrienoic acids, the cytochrome P-450-derived metabolites in postmyocardial infarction (post-MI) healing; 2) acute exposure of fatty acids to 12/15-LOX-/- mice drives leukocyte (neutrophils and macrophages) clearance post-MI; and 3) metabolic transformation of fats is the significant contributor in leukocyte clearance to drive either resolving or nonresolving inflammation post-MI.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Ácidos Graxos/metabolismo , Leucócitos/metabolismo , Infarto do Miocárdio/patologia , Recuperação de Função Fisiológica , Animais , Ativação Enzimática , Leucócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/fisiopatologia , Ligação Proteica , Volume Sistólico
13.
Aging (Albany NY) ; 8(11): 2611-2634, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27777380

RESUMO

Post-myocardial infarction (MI), overactive inflammation is the hallmark of aging, however, the mechanism is unclear. We hypothesized that excess influx of omega 6 fatty acids may impair resolution, thus impacting the cardiosplenic and cardiorenal network post-MI. Young and aging mice were fed on standard lab chow (LC) and excess fatty acid (safflower oil; SO)-enriched diet for 2 months and were then subjected to MI surgery. Despite similar infarct areas and left ventricle (LV) dysfunction post-MI, splenic mass spectrometry data revealed higher levels of arachidonic acid (AA) derived pro-inflammatory metabolites in young-SO, but minimal formation of docosanoids, D- and E- series resolvins in SO-fed aged mice. The aged mice receiving excess intake of fatty acids exhibit; 1) decreased lipoxygenases (5-,12-, and 15) in the infarcted LV; 2) lower levels of 14HDHA, RvD1, RvD5, protectin D1, 7(S)maresin1, 8-,11-,18-HEPE and RvE3 with high levels of tetranor-12-HETEs; 3) dual population of macrophages (CD11blow/F480high and CD11bhigh/F480high) with increased pro-inflammatory (CD11bp+F4/80+Ly6Chi) phenotype and; 4) increased kidney injury marker NGAL with increased expression of TNF-α and IL-1ß indicating MI-induced non-resolving response compared with LC-group. Thus, excess fatty acid intake magnifies the post-MI chemokine signaling and inflames the cardiosplenic and cardiorenal network towards a non-resolving microenvironment in aging.


Assuntos
Envelhecimento/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Interleucina-1beta/metabolismo , Lipocalina-2/metabolismo , Masculino , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 309(11): H1827-36, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432841

RESUMO

The mammalian circadian clock consists of multiple transcriptional regulators that coordinate biological processes in a time-of-day-dependent manner. Cardiomyocyte-specific deletion of the circadian clock component, Bmal1 (aryl hydrocarbon receptor nuclear translocator-like protein 1), leads to age-dependent dilated cardiomyopathy and decreased lifespan in mice. We investigated whether cardiomyocyte-specific Bmal1 knockout (CBK) mice display early alterations in cardiac diastolic function, extracellular matrix (ECM) remodeling, and inflammation modulators by investigating CBK mice and littermate controls at 8 and 28 wk of age (i.e., prior to overt systolic dysfunction). Left ventricles of CBK mice exhibited (P < 0.05): 1) progressive abnormal diastolic septal annular wall motion and reduced pulmonary venous flow only at 28 wk of age; 2) progressive worsening of fibrosis in the interstitial and endocardial regions from 8 to 28 wk of age; 3) increased (>1.5 fold) expression of collagen I and III, as well as the matrix metalloproteinases MMP-9, MMP-13, and MMP-14 at 28 wk of age; 4) increased transcript levels of neutrophil chemotaxis and leukocyte migration genes (Ccl2, Ccl8, Cxcl2, Cxcl1, Cxcr2, Il1ß) with no change in Il-10 and Il-13 genes expression; and 5) decreased levels of 5-LOX, HO-1 and COX-2, enzymes indicating impaired resolution of inflammation. In conclusion, genetic disruption of the cardiomyocyte circadian clock results in diastolic dysfunction, adverse ECM remodeling, and proinflammatory gene expression profiles in the mouse heart, indicating signs of early cardiac aging in CBK mice.


Assuntos
Fatores de Transcrição ARNTL/deficiência , Matriz Extracelular/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Inflamação/metabolismo , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Fatores de Transcrição ARNTL/genética , Fatores Etários , Animais , Diástole , Progressão da Doença , Matriz Extracelular/genética , Fibrose , Regulação da Expressão Gênica , Genótipo , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Inflamação/genética , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Fenótipo , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fatores de Tempo , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
15.
J Mol Cell Cardiol ; 84: 24-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25870158

RESUMO

Unresolved inflammation is a major contributor to the development of heart failure following myocardial infarction (MI). Pro-resolving lipid mediators, such as resolvins (e.g. RvD1), are biosynthesized endogenously. The role of RvD1 in resolving post-MI inflammation has not been elucidated due to its unstable nature. Here, we have tested the role for two forms of RvD1, after incorporation into liposomes (Lipo-RvD1) and its free acid form (RvD1) in the left ventricle (LV) and splenic remodeling post-MI. 8 to 12-week old male, C57BL/6J-mice were subjected to coronary artery ligation and Lipo-RvD1 or RvD1 (3 µg/kg/day) was injected 3h post-MI for day (d)1 or until d5. No-MI mice and saline-injected MI mice served as controls. RvD1 injected groups showed improved fractional shortening post-MI; preserving transient changes in the splenic reservoir compared to MI-saline. RvD1-groups showed an early exit of neutrophils from LV and spleen at d5 post-MI with an increased expression of lipoxin A4 receptor (ALX; synonym formyl peptide receptor; FPR2) compared to the MI-saline group. The levels of pro-resolving mediators RvD1, RvD2, Maresin 1 (MaR1) and Lipoxin A4 (LXA4) were increased in spleens from RvD1 injected mice at d5 post-MI. RvD1 administration reduced macrophage density, ccr5 and cxcl5 levels at d5 post-MI compared to saline injected mice (both, p < 0.05). Increased transcripts of mrc-1, arg-1 and Ym-1 (all, p < 0.05) suggest macrophage-mediated clearance of necrotic cells in RvD1-groups. RvD1 reduced the pro-fibrotic genes (colla1, coll2a1 and tnc (all; p < 0.05)) and decreased collagen deposition, thereby reducing post-MI fibrosis and thus stabilizing the extracellular matrix. In summary, RvD1 and Lipo-RvD1 promote the resolution of acute inflammation initiated by MI, thereby delaying the onset of heart failure.


Assuntos
Ácidos Docosa-Hexaenoicos/uso terapêutico , Ventrículos do Coração/fisiopatologia , Inflamação/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Baço/patologia , Função Ventricular/efeitos dos fármacos , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Cardiomegalia/complicações , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/tratamento farmacológico , Cardiomegalia/fisiopatologia , Contagem de Células , Polaridade Celular/efeitos dos fármacos , Colágeno/metabolismo , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Ventrículos do Coração/efeitos dos fármacos , Inflamação/complicações , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Infiltração de Neutrófilos/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/metabolismo , Edema Pulmonar/complicações , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/fisiopatologia , Receptores de Formil Peptídeo/metabolismo , Baço/efeitos dos fármacos , Ultrassonografia , Remodelação Ventricular/efeitos dos fármacos
16.
Am J Physiol Heart Circ Physiol ; 308(4): H269-80, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25485899

RESUMO

Polyunsaturated fatty acid (PUFA) intake has increased over the last 100 yr, contributing to the current obesogenic environment. Obesity and aging are prominent risk factors for myocardial infarction (MI). How obesity interacts with aging to alter the post-MI response, however, is unclear. We tested the hypothesis that obesity in aging mice would impair the resolution of post-MI inflammation. PUFA diet (PUFA aging group) feeding to 12-mo-old C57BL/6J mice for 5 mo showed higher fat mass compared with standard lab chow (LC)-fed young (LC young group; 3-5 mo old) or aging alone control mice (LC aging group). LC young, LC aging, and PUFA aging mice were subjected to coronary artery ligation to induce MI. Despite similar infarct areas post-MI, plasma proteomic profiling revealed higher VCAM-1 in the PUFA aging group compared with LC young and LC aging groups, leading to increased neutrophil infiltration in the PUFA aging group (P<0.05). Macrophage inflammatory protein-1γ and CD40 were also increased at day 1, and myeloperoxidase remained elevated at day 5, an observation consistent with delayed wound healing in the PUFA aging group. Lipidomic analysis showed higher levels of arachidonic acid and 12(S)-hydroxyeicosatetraenoic acid at day 1 post-MI in the PUFA aging group compared with the LC aging group (all P<0.05), thereby mediating neutrophil extravasation in the PUFA aging group. The inflammation-resolving enzymes 5-lipoxygenase, cyclooxygenase-2, and heme oxyegnase-1 were altered to delay wound healing post-MI in the PUFA aging group compared with LC young and LC aging groups. PUFA aging magnifies the post-MI inflammatory response and impairs the healing response by stimulating prolonged neutrophil trafficking and proinflammatory lipid mediators.


Assuntos
Envelhecimento/metabolismo , Infarto do Miocárdio/metabolismo , Obesidade/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Animais , Ácido Araquidônico/metabolismo , Antígenos CD40/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Lipoxigenase/metabolismo , Proteínas Inflamatórias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/fisiopatologia , Infiltração de Neutrófilos , Obesidade/etiologia , Obesidade/fisiopatologia , Função Ventricular , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...