Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 25(37): 4013-4029, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31713480

RESUMO

The ever-growing resistance of pathogens to antibiotics and crop disease due to pest has triggered severe health concerns in recent years. Consequently, there is a need of powerful and protective materials for the eradication of diseases. Metal/metal oxide nanoparticles (M/MO NPs) are powerful agents due to their therapeutic effects in microbial infections. In this context, the present review article discusses the toxicity, fate, effects and applications of M/MO NPs. This review starts with an introduction, followed by toxicity aspects, antibacterial and testing methods and mechanism. In addition, discussion on the impact of different M/MO NPs and their characteristics such as size, shape, particle dissolution on their induced toxicity on food and plants, as well as applications in pesticides. Finally, prospective on current and future issues are presented.


Assuntos
Nanopartículas Metálicas/toxicidade , Óxidos/toxicidade , Antibacterianos , Praguicidas , Plantas/efeitos dos fármacos
7.
J AOAC Int ; 100(3): 661-670, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28247843

RESUMO

A single-laboratory validation study is described for a method of quantitative analysis of aloins (aloins A and B) and aloe-emodin in aloe vera raw materials and finished products. This method used HPLC coupled with UV detection at 380 nm for the aloins and 430 nm for aloe-emodin. The advantage of this test method is that the target analytes are concentrated from the sample matrix (either liquid or solid form) using stepwise liquid-liquid extraction (water-ethyl acetate-methanol), followed by solvent evaporation and reconstitution. This sample preparation process is suitable for different forms of products. The concentrating step for aloins and aloe-emodin has enhanced the method quantitation level to 20 parts per billion (ppb). Reversed-phase chromatography using a 250 × 4.6 mm column under gradient elution conditions was used. Mobile phase A is 0.1% acetic acid in water and mobile phase B is 0.1% acetic acid in acetonitrile. The HPLC run starts with a 20% mobile phase B that reaches 35% at 13 min. From 13 to 30 min, mobile phase B is increased from 35 to 100%. From 30 to 40 min, mobile phase B is changed from 100% back to the initial condition of 20% for re-equilibration. The flow rate is 1 mL/min, with a 100 µL injection volume. Baseline separation (Rs > 2.0) for aloins A and B and aloe-emodin was observed under this chromatographic condition. This test method was validated with raw materials of aloe vera 5× (liquid) and aloe vera 200× (powder) and finished products of aloe concentrate (liquid) and aloe (powder). The linearity of the method was studied from 10 to 500 ppb for aloins A and B and aloe-emodin, with correlation coefficients of 0.999964, 0.999957, and 0.999980, respectively. The test method was proven to be specific, precise, accurate, rugged, and suitable for the intended quantitative analysis of aloins and aloe-emodin in raw materials and finished products. The S/N for aloins A and B and aloe-emodin at 10 ppb level were 12, 10, and 8, respectively, indicating our conservative LOD level at 10 ppb (the typical LOD level S/N is about 3). The S/N for aloins A and B and aloe-emodin at the 20 ppb level were 17, 14, and 16, respectively, indicating our conservative LOQ level at 20 ppb (the typical LOQ level S/N is about 10). The stock standard solution of a mixture of aloins and aloe-emodin and a working standard solution were found to be stable for at least 19 days when stored refrigerated at 2-8°C, with a recovery of 100 ± 5%.


Assuntos
Aloe/química , Emodina/análogos & derivados , Emodina/análise , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa
9.
J AOAC Int ; 99(2): 360-3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26960288

RESUMO

Protein is a principal component in commonly used dietary supplements and health food products. The analysis of these products, within the consumer package form, is of critical importance for the purpose of ensuring quality and supporting label claims. A rapid test method was developed using near-infrared (NIR) spectroscopy as a compliment to current protein determination by the Dumas combustion method. The NIR method was found to be a rapid, low-cost, and green (no use of chemicals and reagents) complimentary technique. The protein powder samples analyzed in this study were in the range of 22-90% protein. The samples were prepared as mixtures of soy protein, whey protein, and silicon dioxide ingredients, which are common in commercially sold protein powder drink-mix products in the market. A NIR regression model was developed with 17 samples within the constituent range and was validated with 20 independent samples of known protein levels (85-88%). The results show that the NIR method is capable of predicting the protein content with a bias of ±2% and a maximum bias of 3% between NIR and the external Dumas method.


Assuntos
Suplementos Nutricionais/análise , Análise de Alimentos , Ressonância Magnética Nuclear Biomolecular , Dióxido de Silício/análise , Proteínas de Soja/análise , Proteínas do Soro do Leite/análise , Pós , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...