Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 446(7137): 806-10, 2007 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-17314980

RESUMO

Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein-protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.


Assuntos
Cromossomos Fúngicos/metabolismo , Epistasia Genética , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilação , Segregação de Cromossomos , Cromossomos Fúngicos/genética , Reparo do DNA , Replicação do DNA , Histonas/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Ligação Proteica , Curva ROC , Saccharomyces cerevisiae/citologia , Transcrição Gênica
2.
Nature ; 440(7084): 637-43, 2006 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-16554755

RESUMO

Identification of protein-protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. Machine learning was used to integrate the mass spectrometry scores and assign probabilities to the protein-protein interactions. Among 4,087 different proteins identified with high confidence by mass spectrometry from 2,357 successful purifications, our core data set (median precision of 0.69) comprises 7,123 protein-protein interactions involving 2,708 proteins. A Markov clustering algorithm organized these interactions into 547 protein complexes averaging 4.9 subunits per complex, about half of them absent from the MIPS database, as well as 429 additional interactions between pairs of complexes. The data (all of which are available online) will help future studies on individual proteins as well as functional genomics and systems biology.


Assuntos
Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Evolução Biológica , Sequência Conservada , Espectrometria de Massas , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteoma/química , Proteômica , Proteínas de Saccharomyces cerevisiae/química
3.
Mol Cell Biol ; 25(15): 6734-46, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16024807

RESUMO

In a recent study, we provided evidence that strong promoter-bound transcriptional activators result in higher levels of splicing and 3'-end cleavage of nascent pre-mRNA than do weak promoter-bound activators and that this effect of strong activators requires the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II). In the present study, we have investigated the mechanism of activator- and CTD-mediated stimulation of pre-mRNA processing. Affinity chromatography experiments reveal that two factors previously implicated in the coupling of transcription and pre-mRNA processing, PSF and p54(nrb)/NonO, preferentially bind a strong rather than a weak activation domain. Elevated expression in human 293 cells of PSF bypasses the requirement for a strong activator to promote efficient splicing and 3'-end cleavage. Truncation of the pol II CTD, which consists of 52 repeats of the consensus heptapeptide sequence YSPTSPS, to 15 heptapeptide repeats prevents PSF-dependent stimulation of splicing and 3'-end cleavage. Moreover, PSF and p54(nrb)/NonO bind in vitro to the wild-type CTD but not to the truncated 15-repeat CTD, and domains in PSF that are required for binding to activators and to the CTD are also important for the stimulation of pre-mRNA processing. Interestingly, activator- and CTD-dependent stimulation of splicing mediated by PSF appears to primarily affect the removal of first introns. Collectively, these results suggest that the recruitment of PSF to activated promoters and the pol II CTD provides a mechanism by which transcription and pre-mRNA processing are coordinated within the cell.


Assuntos
Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA , Globinas/biossíntese , Globinas/genética , Células HeLa , Humanos , Íntrons/fisiologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Fatores de Transcrição de Octâmero , Fator de Processamento Associado a PTB , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/fisiologia , RNA Polimerase II/metabolismo , RNA Polimerase II/fisiologia , Transcrição Gênica/fisiologia
4.
Oncogene ; 22(1): 28-33, 2003 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-12527904

RESUMO

Mutations in the BRCA1 and BRCA2 genes predispose women to familial, early-onset breast cancer. Both the BRCA1 and BRCA2 proteins appear to function in the homologous recombination pathway of DNA double-strand break repair. Both BRCA1 and BRCA2 have also been implicated in transcription by RNA polymerase II, for both proteins have domains which, when tethered adjacent to a promoter, can activate transcription. In experiments reported here, we have used protein affinity chromatography and coimmunoprecipitation techniques to show that the putative N-terminal acidic transcriptional activation domain of BRCA2 interacts with replication protein A (RPA), a protein essential for DNA repair, replication and recombination. This interaction was not mediated by DNA and was specific for human RPA but not yeast RPA. Since the cancer-predisposing mutation Y42C in BRCA2 significantly compromised the interaction between RPA and BRCA2, this interaction may be biologically important. That BRCA2 protein in HeLa cell extract also coimmunoprecipitated with RPA suggested that this interaction occurs in vivo. Therefore, the transcriptional activation domains within BRCA2, and perhaps BRCA1, may provide links to RPA and DNA repair processes rather than transcription.


Assuntos
Proteína BRCA2/metabolismo , Neoplasias da Mama/genética , Proteínas de Ligação a DNA/metabolismo , Predisposição Genética para Doença , Mutação , Proteína BRCA2/genética , Cromatografia de Afinidade , Humanos , Testes de Precipitina , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicação A
5.
RNA ; 8(9): 1102-11, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12358429

RESUMO

The carboxyl-terminal domain (CTD) of the largest subunit of eukaryotic RNA polymerase II (pol II) plays an important role in promoting steps of pre-mRNA processing. To identify proteins in human cells that bind to the CTD and that could mediate its functions in pre-mRNA processing, we used the mouse CTD expressed in bacterial cells in affinity chromatography experiments. Two proteins present in HeLa cell extract, the splicing and transcription-associated factors, PSF and p54nrb/NonO, bound specifically and could be purified to virtual homogeneity by chromatography on immobilized CTD matrices. Both hypo- and hyperphosphorylated CTD matrices bound these proteins with similar selectivity. PSF and p54nrb/NonO also copurified with a holoenzyme form of pol II containing hypophosphorylated CTD and could be coimmunoprecipitated with antibodies specific for this and the hyperphosphorylated form of pol II. That PSF and p54nrb/NonO promoted the binding of RNA to immobilized CTD matrices suggested these proteins can interact with the CTD and RNA simultaneously. PSF and p54nrb/NonO may therefore provide a direct physical link between the pol II CTD and pre-mRNA processing components, at both the initiation and elongation phases of transcription.


Assuntos
Proteínas Associadas à Matriz Nuclear , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ligação a DNA , Células HeLa , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fatores de Transcrição de Octâmero , Fator de Processamento Associado a PTB , Fosforilação , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase II/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Splicing de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...