Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hematol Oncol ; 15(1): 98, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864539

RESUMO

Mitochondria are essential for tumor growth and progression. However, the heavy demand for mitochondrial activity in cancer leads to increased production of mitochondrial reactive oxygen species (mtROS), accumulation of mutations in mitochondrial DNA, and development of mitochondrial dysfunction. If left unchecked, excessive mtROS can damage and unfold proteins in the mitochondria to an extent that becomes lethal to the tumor. Cellular systems have evolved to combat mtROS and alleviate mitochondrial stress through a quality control mechanism called the mitochondrial unfolded protein response (UPRmt). The UPRmt system is composed of chaperones and proteases, which promote protein folding or eliminate mitochondrial proteins damaged by mtROS, respectively. UPRmt is conserved and activated in cancer in response to mitochondrial stress to maintain mitochondrial integrity and support tumor growth. In this review, we discuss how mitochondria become dysfunctional in cancer and highlight the tumor-promoting functions of key components of the UPRmt.


Assuntos
Neoplasias , Resposta a Proteínas não Dobradas , DNA Mitocondrial , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Neoplasias/metabolismo
2.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653190

RESUMO

Mitochondrial proteostasis, regulated by the mitochondrial unfolded protein response (UPRmt), is crucial for maintenance of cellular functions and survival. Elevated oxidative and proteotoxic stress in mitochondria must be attenuated by the activation of a ubiquitous UPRmt to promote prostate cancer (PCa) growth. Here we show that the 2 key components of the UPRmt, heat shock protein 60 (HSP60, a mitochondrial chaperonin) and caseinolytic protease P (ClpP, a mitochondrial protease), were required for the development of advanced PCa. HSP60 regulated ClpP expression via c-Myc and physically interacted with ClpP to restore mitochondrial functions that promote cancer cell survival. HSP60 maintained the ATP-producing functions of mitochondria, which activated the ß-catenin pathway and led to the upregulation of c-Myc. We identified a UPRmt inhibitor that blocked HSP60's interaction with ClpP and abrogated survival signaling without altering HSP60's chaperonin function. Disruption of HSP60-ClpP interaction with the UPRmt inhibitor triggered metabolic stress and impeded PCa-promoting signaling. Treatment with the UPRmt inhibitor or genetic ablation of Hsp60 inhibited PCa growth and progression. Together, our findings demonstrate that the HSP60-ClpP-mediated UPRmt is essential for prostate tumorigenesis and the HSP60-ClpP interaction represents a therapeutic vulnerability in PCa.


Assuntos
Chaperonina 60 , Neoplasias da Próstata , Animais , Chaperonina 60/genética , Chaperonina 60/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Resposta a Proteínas não Dobradas
3.
Mol Cancer Ther ; 21(4): 535-545, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131878

RESUMO

High frequency of KRAS and TP53 mutations is a unique genetic feature of pancreatic ductal adenocarcinoma (PDAC). TP53 mutation not only renders PDAC resistance to chemotherapies but also drives PDAC invasiveness. Therapies targeting activating mutant KRAS are not available and the outcomes of current PDAC treatment are extremely poor. Here, we report that MMRi62, initially identified as an MDM2-MDM4-targeting small molecule with p53-independent pro-apoptotic activity, shows anti-PDAC activity in vitro and in vivo. We show that MMRi62 inhibits proliferation, clonogenic, and spheroid growth of PDAC cells by induction of cell death. MMRi62-induced cell death in PDAC is characteristic of ferroptosis that is associated with increased autophagy, increased reactive oxygen species, and lysosomal degradation of NCOA4 and ferritin heavy chain (FTH1). In addition to induced degradation of FTH1, MMRi62 also induces proteasomal degradation of mutant p53. Interestingly, MMRi62-induced ferroptosis occurs in PDAC cell lines harboring either KRAS and TP53 double mutations or single TP53 mutation. In orthotopic xenograft PDAC mouse models, MMRi62 was capable of inhibiting tumor growth in mice associated with downregulation of NCOA4 and mutant p53 in vivo. Strikingly, MMRi62 completely abrogated metastasis of orthotopic tumors to distant organs, which is consistent with MMRi62's ability to inhibit cell migration and invasion in vitro. These findings identified MMRi62 as a novel ferroptosis inducer capable of suppressing PDAC growth and overcoming metastasis.


Assuntos
Carcinoma Ductal Pancreático , Ferroptose , Neoplasias Pancreáticas , Animais , Apoferritinas/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/genética
4.
Methods Mol Biol ; 2413: 55-62, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35044654

RESUMO

Mitochondrial metabolism plays key roles in pathologies such as cancer. The five complexes of the oxidative phosphorylation (OXPHOS) system are crucial for producing ATP and maintaining cellular functions and are particularly exploited in cancer cells. Understanding the oligomeric state of these OXPHOS complexes will help elucidate their function (or dysfunction) in cancer cells and can be used as a mechanistic tool for anticancer agents that target mitochondria. Here we describe a protocol to observe the oligomeric state of the five OXPHOS complexes by isolating mitochondrial-enriched fractions followed by assessing their oligomeric state by nondenaturing blue native page electrophoresis.


Assuntos
Mitocôndrias , Fosforilação Oxidativa , Eletroforese/métodos , Mitocôndrias/metabolismo , Eletroforese em Gel de Poliacrilamida Nativa/métodos
5.
Trends Cancer ; 7(12): 1050-1053, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34580036

RESUMO

Increasing evidence indicates that a mitochondria-specific stress response referred to as the 'mitochondrial unfolded protein response' (UPRmt) is activated to maintain mitochondrial integrity and support tumor growth. In this forum article, we discuss the recent advances and current challenges in therapeutically targeting UPRmt in cancer.


Assuntos
Neoplasias , Resposta a Proteínas não Dobradas , Humanos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
Br J Cancer ; 121(11): 934-943, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31673102

RESUMO

BACKGROUND: Interleukin-8 (IL-8) and heat shock protein 60 (Hsp60) play crucial roles in cell survival and maintenance of cellular homoeostasis. However, cross talks between these two proteins are not defined. METHODS: IL-8 expression in tumour tissue sections was analysed by immunohistochemistry. IL-8 expression and release in cancer cells was quantified using enzyme-linked immunosorbent assay (ELISA). Apoptosis was quantified using caspase activity and Annexin-V/PI staining. RESULTS: We observed IL-8 release from cancer cells in response to histone deacetylase inhibitor, apicidin (Api), and non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase, thapsigargin (TG). IL-8 release was increased upon TG-treatment. TG-induced IL-8 expression was reduced in the presence of Api in Bax-dependent manner. Increased apoptosis was associated with decreased IL-8 expression in response to combined treatment of TG and Api. TG and Api combination induced caspase-8 and caspase-9 dependent apoptosis. Hsp60 knockdown abrogated IL-8 expression induced by Api, TG, and their combination. The level of TGF-ß, an upstream regulator of IL-8, was decreased upon Hsp60-silencing. Knocking down Hsp60 decreased IL-8 expression and its release in prostate cancer cell xenograft tumours in SCID mice. CONCLUSION: This study describes the underlying mechanism associated with apoptosis resistance mediated via Hsp60-IL-8 axis in cancer.


Assuntos
Apoptose/efeitos dos fármacos , Chaperonina 60/metabolismo , Interleucina-8/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , Animais , Caspase 8/genética , Caspase 9/genética , Chaperonina 60/genética , Técnicas de Silenciamento de Genes , Células HCT116 , Xenoenxertos , Humanos , Interleucina-8/genética , Masculino , Camundongos , Camundongos SCID , Proteínas Mitocondriais/genética , Neoplasias/patologia , Células PC-3 , Peptídeos Cíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/farmacologia
7.
Cancer Lett ; 413: 82-93, 2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29107110

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive disease and current treatment regimens fail to effectively cure PDAC. Development of resistance to current therapy is one of the key reasons for this outcome. Nimbolide (NL), a triterpenoid obtained from Azadirachta indica, exhibits anticancer properties in various cancer including PDAC cells. However, the underlying mechanism of this anticancer agent in PDAC cells remains undefined. We show that NL exerts a higher level of apoptotic cell death compared to the first-line agent gemcitabine for PDAC, as well as other anticancer agents including sorafenib and curcumin. The anticancer efficacy of NL was further evidenced by a reduction in the CD44+ as well as cancer stem-like cell (CSC) population, as it causes decreased sphere formation. Mechanistically, the anticancer efficacy of NL associates with reduced mutant p53 as well as increased mitochondrial activity in the form of increased mitochondrial reactive oxygen species and mitochondrial mass. Together, this study highlights the therapeutic potential of NL in mutant p53 expressing pancreatic cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Inibidores de Caspase/farmacologia , Receptores de Hialuronatos/metabolismo , Limoninas/farmacologia , Mitocôndrias/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Gencitabina
8.
Biochim Biophys Acta Rev Cancer ; 1867(1): 58-66, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27988298

RESUMO

Abrogation of endoplasmic reticulum (ER) protein folding triggered by exogenous or endogenous factors, stimulates a cellular stress response, termed ER stress. ER stress re-establishes ER homeostasis through integrated signaling termed the ER-unfolded protein response (UPRER). In the presence of severe toxic or prolonged ER stress, the pro-survival function of UPRER is transformed into a lethal signal transmitted to and executed through mitochondria. Mitochondria are key for both apoptotic and autophagic cell death. Thus ER is vital in sensing and coordinating stress pathways to maintain overall physiological homeostasis. However, this function is deregulated in cancer, resulting in resistance to apoptosis induction in response to various stressors including therapeutic agents. Here we review the connections between ER stress and mitochondrial apoptosis, describing potential cancer therapeutic targets.


Assuntos
Apoptose/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/patologia , Mitocôndrias/patologia , Neoplasias/patologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Humanos , Dobramento de Proteína , Transdução de Sinais/fisiologia
9.
Front Biosci (Schol Ed) ; 9(1): 154-164, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27814581

RESUMO

The gap between prostate cancer disparities among American men is narrowing, which is mostly due to increased screening of African American (AA) men. However, the biological reasons for prostate cancer disparities among American men still remain undefined. Mitochondrion, an organelle within cells, regulates both cell survival and cell death mechanisms. These cellular signaling pathways require various proteins localized to mitochondria, which are encoded by both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Interestingly, prostate tissues from AA men harbor reduced mtDNA content compared to Caucasian American (CA) men. Therefore, changes in mitochondrial genes may have detrimental consequences in terms of cellular signaling regulated by mitochondria in AA men. This review describes the plausible underlying mechanism of mtDNA depletion and its impact in driving resistance to therapy leading to faster progression and poor prognosis in African American men with prostate cancer. Since defective cellular signaling is critical for prostate cancer cell survival, restoring mitochondrial function may provide strategies to alleviate prostate cancer disparities among American men.


Assuntos
Negro ou Afro-Americano , Disparidades nos Níveis de Saúde , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/fisiopatologia , População Branca , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Masculino , Fosforilação Oxidativa , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Estados Unidos
10.
Free Radic Biol Med ; 90: 261-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26627937

RESUMO

We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins.


Assuntos
Apoptose/efeitos dos fármacos , Azadirachta/química , Limoninas/farmacologia , Neoplasias/patologia , Fosforilação Oxidativa , Caspases/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , DNA Mitocondrial/análise , Dinaminas , Complexo I de Transporte de Elétrons/fisiologia , GTP Fosfo-Hidrolases/análise , Células HCT116 , Humanos , Proteínas Associadas aos Microtúbulos/análise , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Poro de Transição de Permeabilidade Mitocondrial , Proteínas Mitocondriais/análise , Neoplasias/tratamento farmacológico , Proteína Supressora de Tumor p53/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...