Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 3221, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547352

RESUMO

Forkhead (Fkh/Fox) domain transcription factors (TFs) mediate multiple cardiogenic processes in both mammals and Drosophila. We showed previously that the Drosophila Fox gene jumeau (jumu) controls three categories of cardiac progenitor cell division-asymmetric, symmetric, and cell division at an earlier stage-by regulating Polo kinase activity, and mediates the latter two categories in concert with the TF Myb. Those observations raised the question of whether other jumu-regulated genes also mediate all three categories of cardiac progenitor cell division or a subset thereof. By comparing microarray-based expression profiles of wild-type and jumu loss-of-function mesodermal cells, we identified nebbish (neb), a kinesin-encoding gene activated by jumu. Phenotypic analysis shows that neb is required for only two categories of jumu-regulated cardiac progenitor cell division: symmetric and cell division at an earlier stage. Synergistic genetic interactions between neb, jumu, Myb, and polo and the rescue of jumu mutations by ectopic cardiac mesoderm-specific expression of neb demonstrate that neb is an integral component of a jumu-regulated subnetwork mediating cardiac progenitor cell divisions. Our results emphasize the central role of Fox TFs in cardiogenesis and illustrate how a single TF can utilize different combinations of other regulators and downstream effectors to control distinct developmental processes.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cinesinas/genética , Miocárdio/citologia , Células-Tronco/citologia , Fatores de Transcrição/genética , Animais , Divisão Celular , Drosophila melanogaster/citologia , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento
2.
J Alzheimers Dis ; 45(4): 1197-206, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25690665

RESUMO

Depressive symptoms are common in older adults and are particularly prevalent in those with or at elevated risk for dementia. Although the heritability of depression is estimated to be substantial, single nucleotide polymorphism-based genome-wide association studies of depressive symptoms have had limited success. In this study, we performed genome-wide gene- and pathway-based analyses of depressive symptom burden. Study participants included non-Hispanic Caucasian subjects (n = 6,884) from three independent cohorts, the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Health and Retirement Study (HRS), and the Indiana Memory and Aging Study (IMAS). Gene-based meta-analysis identified genome-wide significant associations (ANGPT4 and FAM110A, q-value = 0.026; GRM7-AS3 and LRFN5, q-value = 0.042). Pathway analysis revealed enrichment of association in 105 pathways, including multiple pathways related to ERK/MAPK signaling, GSK3 signaling in bipolar disorder, cell development, and immune activation and inflammation. GRM7, ANGPT4, and LRFN5 have been previously implicated in psychiatric disorders, including the GRM7 region displaying association with major depressive disorder. The ERK/MAPK signaling pathway is a known target of antidepressant drugs and has important roles in neuronal plasticity, and GSK3 signaling has been previously implicated in Alzheimer's disease and as a promising therapeutic target for depression. Our results warrant further investigation in independent and larger cohorts and add to the growing understanding of the genetics and pathobiology of depressive symptoms in aging and neurodegenerative disorders. In particular, the genes and pathways demonstrating association with depressive symptoms may be potential therapeutic targets for these symptoms in older adults.


Assuntos
Depressão/genética , Idoso , Estudos de Coortes , Feminino , Técnicas de Genotipagem , Humanos , Masculino , Escalas de Graduação Psiquiátrica , População Branca/genética
3.
Ann Neurol ; 77(3): 547-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25559091

RESUMO

We used whole-exome sequencing to identify variants other than APOE associated with the rate of hippocampal atrophy in amnestic mild cognitive impairment. An in-silico predicted missense variant in REST (rs3796529) was found exclusively in subjects with slow hippocampal volume loss and validated using unbiased whole-brain analysis and meta-analysis across 5 independent cohorts. REST is a master regulator of neurogenesis and neuronal differentiation that has not been previously implicated in Alzheimer's disease. These findings nominate REST and its functional pathways as protective and illustrate the potential of combining next-generation sequencing with neuroimaging to discover novel disease mechanisms and potential therapeutic targets.


Assuntos
Amnésia/genética , Disfunção Cognitiva/genética , Progressão da Doença , Exoma/genética , Hipocampo/patologia , Proteínas Repressoras/genética , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Amnésia/patologia , Amnésia/fisiopatologia , Atrofia/genética , Atrofia/patologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Hipocampo/fisiopatologia , Humanos , Masculino , Mutação de Sentido Incorreto , Fatores de Proteção , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...