Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1409717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841201

RESUMO

Mitochondrial homeostasis includes balancing organelle biogenesis with recycling (mitophagy). The ketogenic diet protects retinal ganglion cells (RGCs) from glaucoma-associated neurodegeneration, with a concomitant increase in mitochondrial biogenesis. This study aimed to determine if the ketogenic diet also promoted mitophagy. MitoQC mice that carry a pH-sensitive mCherry-GFP tag on the outer mitochondrial membrane were placed on a ketogenic diet or standard rodent chow for 5 weeks; ocular hypertension (OHT) was induced via magnetic microbead injection in a subset of control or ketogenic diet animals 1 week after the diet began. As a measure of mitophagy, mitolysosomes were quantified in sectioned retina immunolabeled with RBPMS for RGCs or vimentin for Müller glia. Mitolysosomes were significantly increased as a result of OHT and the ketogenic diet (KD) in RGCs. Interestingly, the ketogenic diet increased mitolysosome number significantly higher than OHT alone. In contrast, OHT and the ketogenic diet both increased mitolysosome number in Müller glia to a similar degree. To understand if hypoxia could be a stimulus for mitophagy, we quantified mitolysosomes after acute OHT, finding significantly greater mitolysosome number in cells positive for pimonidazole, an adduct formed in cells exposed to hypoxia. Retinal protein analysis for BNIP3 and NIX showed no differences across groups, suggesting that these receptors were equivocal for mitophagy in this model of OHT. Our data indicate that OHT and hypoxia stimulate mitophagy and that the ketogenic diet is an additive for mitophagy in RGCs. The different response across RGCs and Müller glia to the ketogenic diet may reflect the different metabolic needs of these cell types.

2.
Sci Rep ; 13(1): 20541, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996657

RESUMO

Ocular hypertension during glaucoma can lead to hypoxia, activation of the HIF transcription factors, and a metabolic shift toward glycolysis. This study aims to test whether chronic HIF activation and the attendant metabolic reprogramming can initiate glaucoma-associated pathology independently of ocular hypertension. HIF-1α stabilization was induced in mice for 2 and 4 weeks by inhibiting prolyl hydroxylases using the small molecule Roxadustat. HIF-1α stabilization and the expression of its downstream bioenergetic targets were investigated in the retina by immunofluorescence, capillary electrophoresis, and biochemical enzyme activity assays. Roxadustat dosing resulted in significant stabilization of HIF-1α in the retina by 4 weeks, and upregulation in glycolysis-associated proteins (GLUT3, PDK-1) and enzyme activity in both neurons and glia. Accordingly, succinate dehydrogenase, mitochondrial marker MTCO1, and citrate synthase activity were significantly decreased at 4 weeks, while mitophagy was significantly increased. TUNEL assay showed significant apoptosis of cells in the retina, and PERG amplitude was significantly decreased with 4 weeks of HIF-1α stabilization. A significant increase in AMPK activation and glial hypertrophy, concomitant with decreases in retinal ganglion cell function and inner retina cell death suggests that chronic HIF-1α stabilization alone is detrimental to retina metabolic homeostasis and cellular survival.


Assuntos
Glaucoma , Hipertensão Ocular , Animais , Camundongos , Apoptose , Glaucoma/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitofagia , Hipertensão Ocular/patologia , Respiração , Retina/patologia , Células Ganglionares da Retina/patologia
3.
Am J Physiol Renal Physiol ; 324(5): F494-F504, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995925

RESUMO

Hyperglycemia and increased activity of the renal angiotensin II (ANG II) system are two primary pathogenic stimuli for the onset and progression of podocyte injury in diabetic nephropathy. However, the underlying mechanisms are not fully understood. Store-operated Ca2+ entry (SOCE) is an important mechanism that helps maintain cell Ca2+ homeostasis in both excitable and nonexcitable cells. Our previous study demonstrated that high glucose (HG) enhanced podocyte SOCE (1). It is also known that ANG II activates SOCE by releasing endoplasmic reticulum Ca2+. However, the role of SOCE in stress-induced podocyte apoptosis and mitochondrial dysfunction remains unclear. The present study was aimed to determine whether enhanced SOCE mediated HG- and ANG II-induced podocyte apoptosis and mitochondrial damage. In kidneys of mice with diabetic nephropathy, the number of podocytes was significantly reduced. In cultured human podocytes, both HG and ANG II treatment induced podocyte apoptosis, which was significantly blunted by an SOCE inhibitor, BTP2. Seahorse analysis showed that podocyte oxidative phosphorylation in response to HG and ANG II was impaired. This impairment was significantly alleviated by BTP2. The SOCE inhibitor, but not a transient receptor potential cation channel subfamily C member 6 inhibitor, significantly blunted the damage of podocyte mitochondrial respiration induced by ANG II treatment. Furthermore, BTP2 reversed impaired mitochondrial membrane potential and ATP production and enhanced mitochondrial superoxide generation induced by HG treatment. Finally, BTP2 prevented the overwhelming Ca2+ uptake in HG-treated podocytes. Taken together, our results suggest that enhanced SOCE mediated HG- and ANG II-induced podocyte apoptosis and mitochondrial injury.NEW & NOTEWORTHY This study tested the hypothesis that overwhelming store-operated Ca2+ entry is a novel mechanism contributing to high glucose- and angiotensin II-induced podocyte apoptosis and mitochondrial injury.


Assuntos
Nefropatias Diabéticas , Podócitos , Camundongos , Humanos , Animais , Nefropatias Diabéticas/metabolismo , Angiotensina II/toxicidade , Angiotensina II/metabolismo , Podócitos/metabolismo , Apoptose , Glucose/toxicidade , Glucose/metabolismo
4.
Cells ; 11(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497016

RESUMO

Müller glia (MG), the principal glial cell of the retina, have a metabolism that defies categorization into glycolytic versus oxidative. We showed that MG mount a strong hypoxia response to ocular hypertension, raising the question of their relative reliance on mitochondria for function. To explore the role of oxidative phosphorylation (OXPHOS) in MG energy production in vivo, we generated and characterized adult mice in which MG have impaired cytochrome c oxidase (COXIV) activity through knockout of the COXIV constituent COX10. Histochemistry and protein analysis showed that COXIV protein levels were significantly lower in knockout mouse retina compared to control. Loss of COXIV activity in MG did not induce structural abnormalities, though oxidative stress was increased. Electroretinography assessment showed that knocking out COX10 significantly impaired scotopic a- and b-wave responses. Inhibiting mitochondrial respiration in MG also altered the retinal glycolytic profile. However, blocking OXPHOS in MG did not significantly exacerbate retinal ganglion cell (RGC) loss or photopic negative response after ocular hypertension (OHT). These results suggest that MG were able to compensate for reduced COXIV stability by maintaining fundamental processes, but changes in retinal physiology and metabolism-associated proteins indicate subtle changes in MG function.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Glaucoma , Hipertensão Ocular , Animais , Camundongos , Alquil e Aril Transferases/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletrorretinografia , Glaucoma/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Knockout , Neuroglia/metabolismo , Hipertensão Ocular/metabolismo , Retina/metabolismo
5.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361544

RESUMO

Iron is essential for retinal metabolism, but an excess of ferrous iron causes oxidative stress. In glaucomatous eyes, retinal ganglion cell (RGC) death has been associated with dysregulation of iron homeostasis. Transferrin (TF) is an endogenous iron transporter that controls ocular iron levels. Intraocular administration of TF is neuroprotective in various models of retinal degeneration, preventing iron overload and reducing iron-induced oxidative stress. Herein, we assessed the protective effects of TF on RGC survival, using ex vivo rat retinal explants exposed to iron, NMDA-induced excitotoxicity, or CoCl2-induced hypoxia, and an in vivo rat model of ocular hypertension (OHT). TF significantly preserved RGCs against FeSO4-induced toxicity, NMDA-induced excitotoxicity, and CoCl2-induced hypoxia. TF protected RGCs from apoptosis, ferroptosis, and necrosis. In OHT rats, TF reduced RGC loss by about 70% compared to vehicle-treated animals and preserved about 47% of the axons. Finally, increased iron staining was shown in the retina of a glaucoma patient's eye as compared to non-glaucomatous eyes. These results indicate that TF can interfere with different cell-death mechanisms involved in glaucoma pathogenesis and demonstrate the ability of TF to protect RGCs exposed to elevated IOP. Altogether, these results suggest that TF is a promising treatment against glaucoma neuropathy.


Assuntos
Glaucoma , Fármacos Neuroprotetores , Hipertensão Ocular , Animais , Ratos , Modelos Animais de Doenças , Glaucoma/metabolismo , Hipóxia , Pressão Intraocular , Ferro/metabolismo , N-Metilaspartato , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Hipertensão Ocular/metabolismo , Transferrina/farmacologia
6.
Front Neurosci ; 16: 957034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992925

RESUMO

Glaucoma is an optic neuropathy that leads to irreversible blindness, the most common subtype of which is typified by a chronic increase in intraocular pressure that promotes a stretch injury to the optic nerve head. In rodents, the predominant glial cell in this region is the optic nerve head astrocyte that provides axons with metabolic support, likely by releasing lactate produced through astrocytic glycolysis. Our primary hypothesis is that stretching of the optic nerve head astrocytes alters their metabolic activity, thereby advancing glaucoma-associated degeneration by compromising the metabolic support that the astrocytes provide to the axons in the optic nerve head. Metabolic changes in optic nerve head astrocytes were investigated by subjecting them to 24 h of 12% biaxial stretch at 1 Hz then measuring the cells' bioenergetics using a Seahorse XFe24 Analyzer. We observed significant glycolytic and respiratory activity differences between control and stretched cells, including greater extracellular acidification and lower ATP-linked respiration, yet higher maximal respiration and spare capacity in stretched optic nerve head astrocytes. We also determined that both control and stretched optic nerve head astrocytes displayed a dependency for glutamine over pyruvate or long-chain fatty acids for fuel. The increased use of glycolysis as indicated by the extracellular acidification rate, concomitant with a dependency on glutamine, suggests the need to replenish NAD + for continued glycolysis and provision of carbon for TCA cycle intermediates. Stretch alters optic nerve astrocyte bioenergetics to support an increased demand for internal and external energy.

7.
Antioxidants (Basel) ; 11(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35624752

RESUMO

The magnitude and duration of hypoxia after ocular hypertension (OHT) has been a matter of debate due to the lack of tools to accurately report hypoxia. In this study, we established a topography of hypoxia in the visual pathway by inducing OHT in mice that express a fusion protein comprised of the oxygen-dependent degradation (ODD) domain of HIF-1α and a tamoxifen-inducible Cre recombinase (CreERT2) driven by a ubiquitous CAG promoter. After tamoxifen administration, tdTomato expression would be driven in cells that contain stabilized HIF-1α. Intraocular pressure (IOP) and visual evoked potential (VEP) were measured after OHT at 3, 14, and 28 days (d) to evaluate hypoxia induction. Immunolabeling of hypoxic cell types in the retina and optic nerve (ON) was performed, as well as retinal ganglion cell (RGC) and axon number quantification at each time point (6 h, 3 d, 14 d, 28 d). IOP elevation and VEP decrease were detected 3 d after OHT, which preceded RGC soma and axon loss at 14 and 28 d after OHT. Hypoxia was detected primarily in Müller glia in the retina, and microglia and astrocytes in the ON and optic nerve head (ONH). Hypoxia-induced factor (HIF-α) regulates the expression of glucose transporters 1 and 3 (GLUT1, 3) to support neuronal metabolic demand. Significant increases in GLUT1 and 3 proteins were observed in the retina and ON after OHT. Interestingly, neurons and endothelial cells within the superior colliculus in the brain also experienced hypoxia after OHT as determined by tdTomato expression. The highest intensity labeling for hypoxia was detected in the ONH. Initiation of OHT resulted in significant hypoxia that did not immediately resolve, with low-level hypoxia apparent out to 14 and 28 d, suggesting that continued hypoxia contributes to glaucoma progression. Restricted hypoxia in retinal neurons after OHT suggests a hypoxia management role for glia.

8.
Front Pharmacol ; 12: 699623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366851

RESUMO

Mitochondrial dysfunction and excessive inflammatory responses are both sufficient to induce pathology in age-dependent neurodegenerations. However, emerging evidence indicates crosstalk between damaged mitochondrial and inflammatory signaling can exacerbate issues in chronic neurodegenerations. This review discusses evidence for the interaction between mitochondrial damage and inflammation, with a focus on glaucomatous neurodegeneration, and proposes that positive feedback resulting from this crosstalk drives pathology. Mitochondrial dysfunction exacerbates inflammatory signaling in multiple ways. Damaged mitochondrial DNA is a damage-associated molecular pattern, which activates the NLRP3 inflammasome; priming and activation of the NLRP3 inflammasome, and the resulting liberation of IL-1ß and IL-18 via the gasdermin D pore, is a major pathway to enhance inflammatory responses. The rise in reactive oxygen species induced by mitochondrial damage also activates inflammatory pathways, while blockage of Complex enzymes is sufficient to increase inflammatory signaling. Impaired mitophagy contributes to inflammation as the inability to turnover mitochondria in a timely manner increases levels of ROS and damaged mtDNA, with the latter likely to stimulate the cGAS-STING pathway to increase interferon signaling. Mitochondrial associated ER membrane contacts and the mitochondria-associated adaptor molecule MAVS can activate NLRP3 inflammasome signaling. In addition to dysfunctional mitochondria increasing inflammation, the corollary also occurs, with inflammation reducing mitochondrial function and ATP production; the resulting downward spiral accelerates degeneration. Evidence from several preclinical models including the DBA/2J mouse, microbead injection and transient elevation of IOP, in addition to patient data, implicates both mitochondrial damage and inflammation in glaucomatous neurodegeneration. The pressure-dependent hypoxia and the resulting metabolic vulnerability is associated with mitochondrial damage and IL-1ß release. Links between mitochondrial dysfunction and inflammation can occur in retinal ganglion cells, microglia cells and astrocytes. In summary, crosstalk between damaged mitochondria and increased inflammatory signaling enhances pathology in glaucomatous neurodegeneration, with implications for other complex age-dependent neurodegenerations like Alzheimer's and Parkinson's disease.

9.
Antioxid Redox Signal ; 35(16): 1341-1357, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33736457

RESUMO

Aims: Cellular response to hypoxia can include transition from respiration to glycolysis via upregulation of glycolytic enzymes and transporters, as well as mitophagy induction to eliminate surplus mitochondria. Our purpose was to evaluate the impact of hypoxia-inducible factor-1α (HIF-1α) stabilization on mitochondrial homeostasis and oxidative stress in a chronic model of glaucoma. Results: Retina and optic nerve (ON) were evaluated from young and aged DBA/2J (D2) glaucoma model mice and the control strain, the DBA/2-Gpnmb+. Hypoxic retinal ganglion cells (RGCs) were observed in young and aged D2 retina, with a significant increase in HIF-1α protein in the aged D2 retina. Reactive oxygen species observed in young D2 retina and ON were followed by significant decreases in antioxidant capacity in aged D2 retina and ON. HIF-1α targets such as neuron-specific glucose transporter-3 and lactate dehydrogenase were decreased or unchanged, respectively, in aged D2 retina despite an increased hypoxia response in RGCs. Mitochondrial mass was decreased in aged D2 retina concomitant with decreased mitochondrially encoded electron transport chain transcripts despite a stable nuclear-encoded TFAM (mitochondrial transcription factor), suggesting a breakdown in the nuclear-mitochondrial communication. Decreased mitophagy-associated proteins p62 and Rheb were observed in aged D2 retina, although p62 was significantly increased in the aged D2 ON. Innovation and Conclusion: The increased reactive oxygen species concomitant with HIF-1α upregulation despite reduced glucose transporters, mis-match of nuclear- and mitochondrial-encoded transcripts, and signs of reduced mitophagy suggest that retinas from D2 mice with chronic intraocular pressure elevation transition to pseudohypoxia without consistent metabolic reprogramming before significant RGC loss. Antioxid. Redox Signal. 35, 1341-1357.


Assuntos
Glaucoma/metabolismo , Homeostase , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Animais , Feminino , Glaucoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Estresse Oxidativo
10.
Ann Biomed Eng ; 49(2): 858-870, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32974756

RESUMO

Glaucoma is a neurodegenerative disease in which the retinal ganglion cell axons of the optic nerve degenerate concomitant with synaptic changes in the retina, leading finally to death of the retinal ganglion cells (RGCs). Electrical stimulation has been used to improve neural regeneration in a variety of systems, including in diseases of the retina. Therefore, the focus of this study was to investigate whether transcorneal electrical stimulation (TES) in the DBA2/J mouse model of glaucoma could improve retinal or optic nerve pathology and serve as a minimally invasive treatment option. Mice (10 months-old) received 21 sessions of TES over 8 weeks, after which we evaluated RGC number, axon number, and anterograde axonal transport using histology and immunohistochemistry. To gain insight into the mechanism of proposed protection, we also evaluated inflammation by quantifying CD3+ T-cells and Iba1+ microglia; perturbations in metabolism were shown via the ratio pAMPK to AMPK, and changes in trophic support were tested using protein capillary electrophoresis. We found that TES resulted in RGC axon protection, a reduction in inflammatory cells and their activation, improved energy homeostasis, and a reduction of the cell death-associated p75NTR. Collectively, the data indicated that TES maintained axons, decreased inflammation, and increased trophic factor support, in the form of receptor presence and energy homeostasis, suggesting that electrical stimulation impacts several facets of the neurodegenerative process in glaucoma.


Assuntos
Estimulação Elétrica , Glaucoma/terapia , Doenças Neurodegenerativas/terapia , Nervo Óptico/fisiologia , Retina/fisiologia , Animais , Córnea , Modelos Animais de Doenças , Feminino , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Inflamação/terapia , Masculino , Camundongos Endogâmicos DBA , Microglia , Regeneração Nervosa , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Receptores de Fator de Crescimento Neural/metabolismo
11.
Neurobiol Dis ; 141: 104944, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32422282

RESUMO

Improving cellular access to energy substrates is one strategy to overcome observed declines in energy production and utilization in the aged and pathologic central nervous system. Monocarboxylate transporters (MCTs), the movers of lactate, pyruvate, and ketone bodies into or out of a cell, are significantly decreased in the DBA/2 J mouse model of glaucoma. In order to confirm MCT decreases are disease-associated, we decreased MCT2 in the retinas of MCT2fl/+ mice using an injection of AAV2-cre, observing significant decline in ATP production and visual evoked potential. Restoring MCT2 levels in retinal ganglion cells (RGCs) via intraocular injection of AAV2-GFP-MCT2 in two models of glaucoma, the DBA/2 J (D2), and a magnetic bead model of ocular hypertension (OHT), preserved RGCs and their function. Viral-mediated overexpression of MCT2 increased RGC density and axon number, reduced energy imbalance, and increased mitochondrial function as measured by cytochrome c oxidase and succinate dehydrogenase activity in both models of glaucoma. Ocular hypertensive mice injected with AAV2:MCT2 had significantly greater P1 amplitude as measured by pattern electroretinogram than mice with OHT alone. These findings indicate overexpression of MCT2 improves energy homeostasis in the glaucomatous visual system, suggesting that expanding energy input options for cells is a viable option to combat neurodegeneration.


Assuntos
Glaucoma/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Modelos Animais de Doenças , Potenciais Evocados Visuais , Feminino , Glaucoma/patologia , Glaucoma/fisiopatologia , Masculino , Camundongos Transgênicos , Microglia/metabolismo , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Hipertensão Ocular/metabolismo , Nervo Óptico/metabolismo , Células Ganglionares da Retina/patologia
12.
Mol Neurobiol ; 56(10): 7097-7112, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30980229

RESUMO

Metabolic dysfunction accompanies neurodegenerative disease and aging. An important step for therapeutic development is a more sophisticated understanding of the source of metabolic dysfunction, as well as to distinguish disease-associated changes from aging effects. We examined mitochondrial function in ex vivo aging and glaucomatous optic nerve using a novel approach, the Seahorse Analyzer. Optic nerves (ON) from the DBA/2J mouse model of glaucoma and the DBA/2-Gpnmb+ control strain were isolated, and oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), the discharge of protons from lactate release or byproducts of substrate oxidation, were measured. The glial-specific aconitase inhibitor fluorocitrate was used to limit the contribution of glial mitochondria to OCR and ECAR. We observed significant decreases in maximal respiration, ATP production, and spare capacity with aging. In the presence of fluorocitrate, OCR was higher, with more ATP produced, in glaucoma compared to aged ON. However, glaucoma ON showed lower maximal respiration. In the presence of fluorocitrate and challenged with ATPase inhibition, glaucoma ON was incapable of further upregulation of glycolysis to compensate for the loss of oxidative phosphorylation. Inclusion of 2-deoxyglucose as a substrate during ATPase inhibition indicated a significantly higher proportion of ECAR was derived from TCA cycle substrate oxidation than glycolysis in glaucoma ON. These data indicate that glaucoma axons have limited ability to respond to increased energy demand given their lower maximal respiration and inability to upregulate glycolysis when challenged. The higher ATP output from axonal mitochondria in glaucoma optic nerve compensates for this lack of resiliency but is ultimately inadequate for continued function.


Assuntos
Glaucoma/metabolismo , Glaucoma/patologia , Glicólise , Degeneração Neural/patologia , Nervo Óptico/patologia , Animais , Axônios/metabolismo , Citratos/metabolismo , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos DBA , Mitocôndrias/metabolismo , Degeneração Neural/metabolismo , Nervo Óptico/metabolismo , Consumo de Oxigênio , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
13.
Invest Ophthalmol Vis Sci ; 60(1): 1-15, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30601926

RESUMO

Purpose: Reoxygenation after hypoxia can increase reactive oxygen species and upregulate autophagy. We determined, for the first time, the impact of elevated IOP on hypoxia induction, superoxide accumulation, and autophagy in a bead model of glaucoma. Method: Ocular hypertension was achieved with magnetic bead injection into the anterior chamber. Before mice were killed, they were injected with pimonidazole for hypoxia detection and dihydroethidium (DHE) for superoxide detection. Total retinal ganglion cells (RGCs) and optic nerve (ON) axons were quantified, total glutathione (GSH) was measured, and retinal and ON protein and mRNA were analyzed for hypoxia (Hif-1α and Hif-2α), autophagy (LC3 and p62), and SOD2. Results: With IOP elevation (P < 0.0001), the retina showed significantly (P < 0.001) decreased GSH compared with control, and a significant decrease (P < 0.01) in RGC density compared with control. Pimonidazole-positive Müller glia, microglia, astrocytes, and RGCs were present in the retinas after 4 weeks of ocular hypertension but absent in both the control and after only 2 weeks of ocular hypertension. The ON showed significant axon degeneration (P < 0.0001). The mean intensity of DHE in the ganglion cell layer and ON significantly increased (P < 0.0001). The ratio of LC3-II to LC3-I revealed a significant increase (P < 0.05) in autophagic activity in hypertensive retinas compared with control. Conclusions: We report a novel observation of hypoxia and a significant decrease in GSH, likely contributing to superoxide accumulation, in the retinas of ocular hypertensive mice. The significant increase in the ratio of LC3-II to LC3-I suggests autophagy induction.


Assuntos
Autofagia , Hipóxia/patologia , Modelos Animais , Neuroglia/patologia , Hipertensão Ocular/patologia , Animais , Axônios/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Glutationa/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pressão Intraocular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Hipertensão Ocular/metabolismo , Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
14.
J Neuroinflammation ; 15(1): 313, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30424795

RESUMO

BACKGROUND: Glaucoma is a chronic degenerative disease for which inflammation is considered to play a pivotal role in the pathogenesis and progression. In this study, we examined the impact of a ketogenic diet on the inflammation evident in glaucoma as a follow-up to a recent set of experiments in which we determined that a ketogenic diet protected retinal ganglion cell structure and function. METHODS: Both sexes of DBA/2J (D2) mice were placed on a ketogenic diet (keto) or standard rodent chow (untreated) for 8 weeks beginning at 9 months of age. DBA/2J-Gpnmb+ (D2G) mice were also used as a non-pathological genetic control for the D2 mice. Retina and optic nerve (ON) tissues were micro-dissected and used for the analysis of microglia activation, expression of pro- and anti-inflammatory molecules, and lactate- or ketone-mediated anti-inflammatory signaling. Data were analyzed by immunohistochemistry, quantitative RT-PCR, ELISA, western blot, and capillary tube-based electrophoresis techniques. RESULTS: Microglia activation was observed in D2 retina and ON as documented by intense microglial-specific Iba1 immunolabeling of rounded-up and enlarged microglia. Ketogenic diet treatment reduced Iba1 expression and the activated microglial phenotype. We detected low energy-induced AMP-activated protein kinase (AMPK) phosphorylation in D2 retina and ON that triggered NF-κB p65 signaling through its nuclear translocation. NF-κB induced pro-inflammatory TNF-α, IL-6, and NOS2 expression in D2 retina and ON. However, treatment with the ketogenic diet reduced AMPK phosphorylation, NF-κB p65 nuclear translocation, and expression of pro-inflammatory molecules. The ketogenic diet also induced expression of anti-inflammatory agents Il-4 and Arginase-1 in D2 retina and ON. Increased expression of hydroxycarboxylic acid receptor 1 (HCAR1) after ketogenic diet treatment was observed. HCAR1 stimulation by lactate or ketones from the ketogenic diet reduced inflammasome formation, as shown by reduced mRNA and protein expression of NLRP3 and IL-1ß. We also detected increased levels of Arrestin ß-2 protein, an adapter protein required for HCAR1 signaling. CONCLUSION: Our data demonstrate that the AMPK activation apparent in the glaucomatous retina and ON triggers NF-κB signaling and consequently induces a pro-inflammatory response. The ketogenic diet resolves energy demand and ameliorates the inflammation by inhibition of AMPK activation and stimulation of HCAR1-ARRB2 signaling that inhibits NLRP3 inflammasome-mediated inflammation. Thus, these findings depict a neuroprotective mechanism of the ketogenic diet in controlling inflammation and suggest potential therapeutic targets for inflammatory neurodegenerative diseases, including glaucoma.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glaucoma/complicações , Inflamação/etiologia , Inflamação/prevenção & controle , Neuroproteção/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Células Ganglionares da Retina/patologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Dieta Cetogênica/métodos , Modelos Animais de Doenças , Proteínas do Olho/genética , Feminino , Glaucoma/patologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Mutação/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuroproteção/efeitos dos fármacos , Nervo Óptico/patologia , Células Ganglionares da Retina/efeitos dos fármacos
16.
J Neurosci ; 38(22): 5122-5139, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29760184

RESUMO

Axon degeneration can arise from metabolic stress, potentially a result of mitochondrial dysfunction or lack of appropriate substrate input. In this study, we investigated whether the metabolic vulnerability observed during optic neuropathy in the DBA/2J (D2) model of glaucoma is due to dysfunctional mitochondria or impaired substrate delivery to axons, the latter based on our observation of significantly decreased glucose and monocarboxylate transporters in D2 optic nerve (ON), human ON, and mice subjected to acute glaucoma injury. We placed both sexes of D2 mice destined to develop glaucoma and mice of a control strain, the DBA/2J-Gpnmb+, on a ketogenic diet to encourage mitochondrial function. Eight weeks of the diet generated mitochondria, improved energy availability by reversing monocarboxylate transporter decline, reduced glial hypertrophy, protected retinal ganglion cells and their axons from degeneration, and maintained physiological signaling to the brain. A robust antioxidant response also accompanied the response to the diet. These results suggest that energy compromise and subsequent axon degeneration in the D2 is due to low substrate availability secondary to transporter downregulation.SIGNIFICANCE STATEMENT We show axons in glaucomatous optic nerve are energy depleted and exhibit chronic metabolic stress. Underlying the metabolic stress are low levels of glucose and monocarboxylate transporters that compromise axon metabolism by limiting substrate availability. Axonal metabolic decline was reversed by upregulating monocarboxylate transporters as a result of placing the animals on a ketogenic diet. Optic nerve mitochondria responded capably to the oxidative phosphorylation necessitated by the diet and showed increased number. These findings indicate that the source of metabolic challenge can occur upstream of mitochondrial dysfunction. Importantly, the intervention was successful despite the animals being on the cusp of significant glaucoma progression.


Assuntos
Dieta Cetogênica , Nervo Óptico/patologia , Consumo de Oxigênio , Animais , Antioxidantes/metabolismo , Metabolismo Energético , Feminino , Glaucoma/patologia , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Imuno-Histoquímica , Pressão Intraocular , Masculino , Camundongos , Camundongos Endogâmicos DBA , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Doenças do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia
17.
Front Neurosci ; 11: 146, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424571

RESUMO

Axons can be several orders of magnitude longer than neural somas, presenting logistical difficulties in cargo trafficking and structural maintenance. Keeping the axon compartment well supplied with energy also presents a considerable challenge; even seemingly subtle modifications of metabolism can result in functional deficits and degeneration. Axons require a great deal of energy, up to 70% of all energy used by a neuron, just to maintain the resting membrane potential. Axonal energy, in the form of ATP, is generated primarily through oxidative phosphorylation in the mitochondria. In addition, glial cells contribute metabolic intermediates to axons at moments of high activity or according to need. Recent evidence suggests energy disruption is an early contributor to pathology in a wide variety of neurodegenerative disorders characterized by axonopathy. However, the degree to which the energy disruption is intrinsic to the axon vs. associated glia is not clear. This paper will review the role of energy availability and utilization in axon degeneration in glaucoma, a chronic axonopathy of the retinal projection.

18.
Front Neurosci ; 10: 494, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27857681

RESUMO

Axonal transport deficits precede structural loss in glaucoma and other neurodegenerations. Impairments in structural support, including modified cytoskeletal proteins, and microtubule-destabilizing elements, could be initiating factors in glaucoma pathogenesis. We investigated the time course of changes in protein levels and post-translational modifications in the DBA/2J mouse model of glaucoma. Using anterograde tract tracing of the retinal projection, we assessed major cytoskeletal and transported elements as a function of transport integrity in different stages of pathological progression. Using capillary-based electrophoresis, single- and multiplex immunosorbent assays, and immunofluorescence, we quantified hyperphosphorylated neurofilament-heavy chain, phosphorylated tau (ptau), calpain-mediated spectrin breakdown product (145/150 kDa), ß-tubulin, and amyloid-ß42 proteins based on age and transport outcome to the superior colliculus (SC; the main retinal target in mice). Phosphorylated neurofilament-heavy chain (pNF-H) was elevated within the optic nerve (ON) and SC of 8-10 month-old DBA/2J mice, but was not evident in the retina until 12-15 months, suggesting that cytoskeletal modifications first appear in the distal retinal projection. As expected, higher pNF-H levels in the SC and retina were correlated with axonal transport deficits. Elevations in hyperphosphorylated tau (ptau) occurred in ON and SC between 3 and 8 month of age while retinal ptau accumulations occurred at 12-15 months in DBA/2J mice. In vitro co-immunoprecipitation experiments suggested increased affinity of ptau for the retrograde motor complex protein dynactin. We observed a transport-related decrease of ß-tubulin in ON of 10-12 month-old DBA/2J mice, suggesting destabilized microtubule array. Elevations in calpain-mediated spectrin breakdown product were seen in ON and SC at the earliest age examined, well before axonal transport loss is evident. Finally, transport-independent elevations of amyloid-ß42, unlike pNF-H or ptau, occurred first in the retina of DBA/2J mice, and then progressed to SC. These data demonstrate distal-to-proximal progression of cytoskeletal modifications in the progression of glaucoma, with many of these changes occurring prior to complete loss of functional transport and axon degeneration. The earliest changes, such as elevated spectrin breakdown and amyloid-ß levels, may make retinal ganglion cells susceptible to future stressors. As such, targeting modification of the axonal cytoskeleton in glaucoma may provide unique opportunities to slow disease progression.

19.
J Comp Neurol ; 524(17): 3503-3517, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27072596

RESUMO

Axonal transport defects are an early pathology occurring within the retinofugal projection of the DBA/2J mouse model of glaucoma. Retinal ganglion cell (RGC) axons and terminals are detectable after transport is affected, yet little is known about the condition of these structures. We examined the ultrastructure of the glaucomatous superior colliculus (SC) with three-dimensional serial block-face scanning electron microscopy to determine the distribution and morphology of retinal terminals in aged mice exhibiting varying levels of axonal transport integrity. After initial axonal transport failure, retinal terminal densities did not vary compared with either transport-intact or control tissue. Although retinal terminals lacked overt signs of neurodegeneration, transport-intact areas of glaucomatous SC exhibited larger retinal terminals and associated mitochondria. This likely indicates increased oxidative capacity and may be a compensatory response to the stressors that this projection is experiencing. Areas devoid of transported tracer label showed reduced mitochondrial volumes as well as decreased active zone number and surface area, suggesting that oxidative capacity and synapse strength are reduced as disease progresses but before degeneration of the synapse. Mitochondrial volume was a strong predictor of bouton size independent of pathology. These findings indicate that RGC axons retain connectivity after losing function early in the disease process, creating an important therapeutic opportunity for protection or restoration of vision in glaucoma. J. Comp. Neurol. 524:3503-3517, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Transporte Axonal , Glaucoma/patologia , Células Ganglionares da Retina/patologia , Colículos Superiores/patologia , Sinapses/patologia , Animais , Transporte Axonal/fisiologia , Modelos Animais de Doenças , Glaucoma/metabolismo , Imageamento Tridimensional , Camundongos Endogâmicos DBA , Microscopia Eletrônica de Varredura , Mitocôndrias/patologia , Técnicas de Rastreamento Neuroanatômico , Análise de Regressão , Células Ganglionares da Retina/metabolismo , Colículos Superiores/metabolismo , Sinapses/metabolismo , Vias Visuais/metabolismo , Vias Visuais/patologia
20.
Exp Eye Res ; 150: 22-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26646560

RESUMO

Glaucoma challenges the survival of retinal ganglion cell axons in the optic nerve through processes dependent on both aging and ocular pressure. Relevant stressors likely include complex interplay between axons and astrocytes, both in the retina and optic nerve. In the DBA/2J mouse model of pigmentary glaucoma, early progression involves axonopathy characterized by loss of functional transport prior to outright degeneration. Here we describe novel features of early pathogenesis in the DBA/2J nerve. With age the cross-sectional area of the nerve increases; this is associated generally with diminished axon packing density and survival and increased glial coverage of the nerve. However, for nerves with the highest axon density, as the nerve expands mean cross-sectional axon area enlarges as well. This early expansion was marked by disorganized axoplasm and accumulation of hyperphosphorylated neurofilamants indicative of axonopathy. Axon expansion occurs without loss up to a critical threshold for size (about 0.45-0.50 µm(2)), above which additional expansion tightly correlates with frank loss of axons. As well, early axon expansion prior to degeneration is concurrent with decreased astrocyte ramification with redistribution of processes towards the nerve edge. As axons expand beyond the critical threshold for loss, glial area resumes an even distribution from the center to edge of the nerve. We also found that early axon expansion is accompanied by reduced numbers of mitochondria per unit area in the nerve. Finally, our data indicate that both IOP and nerve expansion are associated with axon enlargement and reduced axon density for aged nerves. Collectively, our data support the hypothesis that diminished bioenergetic resources in conjunction with early nerve and glial remodeling could be a primary inducer of progression of axon pathology in glaucoma.


Assuntos
Astrócitos/patologia , Glaucoma de Ângulo Aberto/patologia , Degeneração Neural/patologia , Doenças do Nervo Óptico/patologia , Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Axônios/patologia , Modelos Animais de Doenças , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos DBA , Degeneração Neural/etiologia , Doenças do Nervo Óptico/etiologia , Fotomicrografia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...