Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Australas Phys Eng Sci Med ; 41(1): 217-223, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29446004

RESUMO

This paper examines the difference in patient specific dosimetry using three different detectors of varying active volume, density and composition, for quality assurance of stereotactic treatments. A PTW 60017 unshielded electron diode, an Exradin W1 scintillator, and a PTW 31014 PinPoint small volume ionisation chamber were setup in a Lucy 3D QA phantom, and were positioned at the isocentre of an Elekta Axesse, with beam modulator collimator, using Exactrac and a HexaPODTM couch. Dose measurements were acquired for 43 stereotactic arcs, and compared to BrainLAB iPlan version 3.0.0 treatment planning system (TPS) calculations using a pencil beam algorithm. It was found that for arcs with field sizes [Formula: see text] mm, the properties of a detector have minimal impact on the measured doses, with all three detectors agreeing with the TPS (to within 5%). However, for field sizes [Formula: see text] mm, only the scintillator was found to yield results to within 5% of the TPS. The dose discrepancies were found to increase with decreasing field size. It is recommended that for field sizes [Formula: see text] mm, a water equivalent dosimeter like the Exradin W1 scintillator be used in order to minimise detector composition perturbations in the measured doses.


Assuntos
Radiometria/instrumentação , Técnicas Estereotáxicas/instrumentação , Relação Dose-Resposta à Radiação , Humanos , Metástase Neoplásica , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Incerteza
2.
Australas Phys Eng Sci Med ; 37(2): 385-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24760737

RESUMO

A computed tomography number to relative electron density (CT-RED) calibration is performed when commissioning a radiotherapy CT scanner by imaging a calibration phantom with inserts of specified RED and recording the CT number displayed. In this work, CT-RED calibrations were generated using several commercially available phantoms to observe the effect of phantom geometry on conversion to electron density and, ultimately, the dose calculation in a treatment planning system. Using an anthropomorphic phantom as a gold standard, the CT number of a material was found to depend strongly on the amount and type of scattering material surrounding the volume of interest, with the largest variation observed for the highest density material tested, cortical bone. Cortical bone gave a maximum CT number difference of 1,110 when a cylindrical insert of diameter 28 mm scanned free in air was compared to that in the form of a 30 × 30 cm(2) slab. The effect of using each CT-RED calibration on planned dose to a patient was quantified using a commercially available treatment planning system. When all calibrations were compared to the anthropomorphic calibration, the largest percentage dose difference was 4.2 % which occurred when the CT-RED calibration curve was acquired with heterogeneity inserts removed from the phantom and scanned free in air. The maximum dose difference observed between two dedicated CT-RED phantoms was ±2.1 %. A phantom that is to be used for CT-RED calibrations must have sufficient water equivalent scattering material surrounding the heterogeneous objects that are to be used for calibration.


Assuntos
Elétrons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Humanos , Modelos Biológicos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...