Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mycopathologia ; 187(4): 393-396, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35610393

RESUMO

Modified Leeming and Notman agar medium (mLNA) has been widely utilized to grow lipophilic fungi belonging to the genus Malassezia. We developed a new artificial-sebum-containing mLNA to obtain higher yields of Malassezia species. The olive oil in mLNA was replaced with an artificial sebum composed of triglyceride (triolein), diglyceride (glyceryl distearate), fatty acids (palmitic acid, myristic acid, pentadecanoic acid, and oleic acid), and squalene. Furthermore, the Tween 60 was replaced with self-emulsifying glyceryl stearate. Nine human-associated Malassezia species grew well on the artificial-sebum-containing mLNA, and the most predominant fungus on human skin, Malassezia restricta, exhibited double wet cell weight in artificial sebum-containing mLNA compared to wet cell weight in standard mLNA.


Assuntos
Malassezia , Ágar , Meios de Cultura , Humanos , Sebo , Pele/microbiologia
2.
Microorganisms ; 9(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34683453

RESUMO

The skin microbiome and sebum may be associated with inflammation-related diseases of the scalp. To assess the pathogenesis and progression of androgenetic alopecia (AGA), we analyzed the composition of sebum and the bacterial and fungal microbiomes of the scalps of 118 Japanese male individuals with and without AGA, then discussed their roles in the pathogenesis of AGA. Sebum triglyceride and palmitic acid contents were higher in the AGA group than in the non-AGA group. Malassezia restricta, a lipophilic fungus that consumes palmitic acid, was abundant on the scalps of patients with AGA. Cutibacterium, Corynebacterium, and Staphylococcus were the most common genera in both groups, and patients with AGA exhibited scalp dysbiosis (increased abundance of Cutibacterium and decreased abundance of Corynebacterium). Our findings suggest that both sebum and the bacterial and fungal microbiomes of the scalp may be involved in the development of AGA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...