Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 16156, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171250

RESUMO

We have previously shown that Kyoto University Substances (KUSs), valosin-containing protein (VCP) modulators, suppress cell death in retinal ganglion cells of glaucoma mouse models through alterations of various genes expressions. In this study, among the genes whose expression in retinal ganglion cells was altered by KUS treatment in the N-methyl-D-aspartic acid (NMDA) injury model, we focused on two genes, endothelin-1 (Edn1) and endothelin receptor type B (Ednrb), whose expression was up-regulated by NMDA and down-regulated by KUS treatment. First, we confirmed that the expression of Edn1 and Ednrb was upregulated by NMDA and suppressed by KUS administration in mice retinae. Next, to clarify the influence of KUSs on cell viability in relation to the endothelin signaling, cell viability was examined with or without antagonists or agonists of endothelin and with or without KUS in 661W retinal cells under stress conditions. KUS showed a significant protective effect under glucose-free conditions and tunicamycin-induced stress. This protective effect was partially attenuated in the presence of an endothelin antagonist or agonist under glucose-free conditions. These results suggest that KUSs protect cells partially by suppressing the upregulated endothelin signaling under stress conditions.


Assuntos
N-Metilaspartato , Células Ganglionares da Retina , Animais , Antagonistas dos Receptores de Endotelina/farmacologia , Endotelina-1/metabolismo , Camundongos , N-Metilaspartato/metabolismo , Neuroproteção , Células Ganglionares da Retina/metabolismo , Tunicamicina/farmacologia , Proteína com Valosina/metabolismo
2.
Microbiol Spectr ; 10(4): e0111022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35876582

RESUMO

Flagellar structural subunits are transported via the flagellar type III secretion system (fT3SS) and assemble at the distal end of the growing flagellar structure. The C-terminal cytoplasmic domain of FlhA (FlhAC) serves as a docking platform for export substrates and flagellar chaperones and plays an important role in hierarchical protein targeting and export. FlhAC consists of domains D1, D2, D3, and D4 and adopts open and closed conformations. Gly-368 of Salmonella FlhA is located within the highly conserved GYXLI motif and is critical for the dynamic domain motions of FlhAC. However, it remains unclear how it works. Here, we report that periodic conformational changes of the GYXLI motif induce a remodeling of hydrophobic side chain interaction networks in FlhAC and promote the cyclic open-close domain motions of FlhAC. The temperature-sensitive flhA(G368C) mutation stabilized a completely closed conformation at 42°C through strong hydrophobic interactions between Gln-498 of domain D1 and Pro-667 of domain D4 and between Phe-459 of domain D2 and Pro-646 of domain D4, thereby inhibiting flagellar protein export by the fT3SS. Its intragenic suppressor mutations reorganized the hydrophobic interaction networks in the closed FlhAC structure, restoring the protein export activity of the fT3SS to a significant degree. Furthermore, the conformational flexibility of the GYXLI motif was critical for flagellar protein export. We propose that the conserved GYXLI motif acts as a structural switch to induce the dynamic domain motions of FlhAC required for efficient and rapid protein export by the fT3SS. IMPORTANCE Many motile bacteria employ the flagellar type III secretion system (fT3SS) to construct flagella beyond the cytoplasmic membrane. The C-terminal cytoplasmic domain of FlhA (FlhAC), a transmembrane subunit of the fT3SS, provides binding sites for export substrates and flagellar export chaperones to coordinate flagellar protein export with assembly. FlhAC undergoes cyclic open-close domain motions. The highly conserved Gly-368 residue of FlhA is postulated to be critical for dynamic domain motions of FlhAC. However, it remains unknown how it works. Here, we carried out mutational analysis of FlhAC combined with molecular dynamics simulation and provide evidence that the conformational flexibility of FlhAC by Gly-368 is important for remodeling hydrophobic side chain interaction networks in FlhAC to facilitate its cyclic open-close domain motions, allowing the fT3SS to transport flagellar structural subunits for efficient and rapid flagellar assembly.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo III , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Transporte Proteico , Sistemas de Secreção Tipo III/metabolismo
3.
Methods Mol Biol ; 2549: 307-320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34490595

RESUMO

We have established a stepwise method to differentiate induced pluripotent stem cells (iPSCs) into retinal pigment epithelium (RPE) (iPSC-RPE), which enables efficient isolation and purification of patient-derived iPSC-RPE cells with high quality. Here, we describe in detail the process of differentiating iPSCs into iPSC-RPE.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Humanos , Epitélio Pigmentado da Retina
4.
Commun Biol ; 4(1): 646, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059784

RESUMO

The flagellar protein export apparatus switches substrate specificity from hook-type to filament-type upon hook assembly completion, thereby initiating filament assembly at the hook tip. The C-terminal cytoplasmic domain of FlhA (FlhAC) serves as a docking platform for flagellar chaperones in complex with their cognate filament-type substrates. Interactions of the flexible linker of FlhA (FlhAL) with its nearest FlhAC subunit in the FlhAC ring is required for the substrate specificity switching. To address how FlhAL brings the order to flagellar assembly, we analyzed the flhA(E351A/W354A/D356A) ΔflgM mutant and found that this triple mutation in FlhAL increased the secretion level of hook protein by 5-fold, thereby increasing hook length. The crystal structure of FlhAC(E351A/D356A) showed that FlhAL bound to the chaperone-binding site of its neighboring subunit. We propose that the interaction of FlhAL with the chaperon-binding site of FlhAC suppresses filament-type protein export and facilitates hook-type protein export during hook assembly.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Proteínas de Membrana/metabolismo , Salmonella enterica/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Flagelos/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Chaperonas Moleculares/genética , Mutação/genética , Ligação Proteica , Transporte Proteico/genética , Especificidade por Substrato
5.
Exp Eye Res ; 205: 108503, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609509

RESUMO

Retinitis pigmentosa (RP) is an incurable retinal degenerative disease with an unknown mechanism of disease progression. Mer tyrosine kinase (MERTK), which encodes a receptor of the Tyro3/Axl/Mer family of tyrosine kinases, is one of the causal genes of RP. MERTK is reportedly expressed in the retinal pigment epithelium (RPE) and is essential for phagocytosis of the photoreceptor outer segment. Here, we established induced pluripotent stem cells (iPSC) from patients with RP having homozygous or compound heterozygous mutations in MERTK, and from healthy subjects; the RP patient- and healthy control-derived iPSCs were differentiated into RPE cells. Although cytoskeleton staining suggested that polarity may have been disturbed mildly, there were no apparent morphological differences between the diseased and normal RPE cells. The internalization of photoreceptor outer segments in diseased iPSC-RPE cells was significantly lower than that in normal iPSC-RPE cells. This in vitro disease model may be useful for elucidating the mechanisms of disease progression and screening treatments for the disease.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Fagocitose/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Retinose Pigmentar/metabolismo , c-Mer Tirosina Quinase/genética , Adulto , Western Blotting , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Retinose Pigmentar/genética
6.
Sci Rep ; 10(1): 838, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964971

RESUMO

The hook length of the flagellum is controlled to about 55 nm in Salmonella. The flagellar type III protein export apparatus secretes FliK to determine hook length during hook assembly and changes its substrate specificity from the hook protein to the filament protein when the hook length has reached about 55 nm. Salmonella FliK consists of an N-terminal domain (FliKN, residues 1-207), a C-terminal domain (FliKC, residues 268-405) and a flexible linker (FliKL, residues 208-267) connecting these two domains. FliKN is a ruler to measure hook length. FliKC binds to a transmembrane export gate protein FlhB to undergo the export switching. FliKL not only acts as part of the ruler but also contributes to this switching event, but it remains unknown how. Here we report that FliKL is required for efficient interaction of FliKC with FlhB. Deletions in FliKL not only shortened hook length according to the size of deletions but also caused a loose length control. Deletion of residues 206-265 significantly reduced the binding affinity of FliKC for FlhB, thereby producing much longer hooks. We propose that an appropriate length of FliKL is required for efficient interaction of FliKC with FlhB.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Salmonella/citologia , Salmonella/metabolismo , Proteínas de Bactérias/química , Domínios Proteicos , Transporte Proteico , Salmonella/genética
7.
Mol Microbiol ; 113(4): 755-765, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31828860

RESUMO

The bacterial flagellar motor accommodates ten stator units around the rotor to produce large torque at high load. But when external load is low, some previous studies showed that a single stator unit can spin the rotor at the maximum speed, suggesting that the maximum speed does not depend on the number of active stator units, whereas others reported that the speed is also dependent on the stator number. To clarify these two controversial observations, much more precise measurements of motor rotation would be required at external load as close to zero as possible. Here, we constructed a Salmonella filament-less mutant that produces a rigid, straight, twice longer hook to efficiently label a 60 nm gold particle and analyzed flagellar motor dynamics at low load close to zero. The maximum motor speed was about 400 Hz. Large speed fluctuations and long pausing events were frequently observed, and they were suppressed by either over-expression of the MotAB stator complex or increase in the external load, suggesting that the number of active stator units in the motor largely fluctuates near zero load. We conclude that the lifetime of the active stator unit becomes much shorter when the motor operates near zero load.


Assuntos
Flagelos/fisiologia , Proteínas Motores Moleculares/metabolismo , Salmonella/fisiologia , Proteínas de Bactérias/metabolismo , Rotação , Torque
8.
J Bacteriol ; 202(3)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712281

RESUMO

FlhA and FlhB are transmembrane proteins of the flagellar type III protein export apparatus, and their C-terminal cytoplasmic domains (FlhAC and FlhBC) coordinate flagellar protein export with assembly. FlhBC undergoes autocleavage between Asn-269 and Pro-270 in a well-conserved NPTH loop located between FlhBCN and FlhBCC polypeptides and interacts with the C-terminal domain of the FliK ruler when the length of the hook has reached about 55 nm in Salmonella As a result, the flagellar protein export apparatus switches its substrate specificity, thereby terminating hook assembly and initiating filament assembly. The mechanism of export switching remains unclear. Here, we report the role of FlhBC cleavage in the switching mechanism. Photo-cross-linking experiments revealed that the flhB(N269A) and flhB(P270A) mutations did not affect the binding affinity of FlhBC for FliK. Genetic analysis of the flhB(P270A) mutant revealed that the P270A mutation affects a FliK-dependent conformational change of FlhBC, thereby inhibiting the substrate specificity switching. The flhA(A489E) mutation in FlhAC suppressed the flhB(P270A) mutation, suggesting that an interaction between FlhBC and FlhAC is critical for the export switching. We propose that the interaction between FliKC and a cleaved form of FlhBC promotes a conformational change in FlhBC responsible for the termination of hook-type protein export and a structural remodeling of the FlhAC ring responsible for the initiation of filament-type protein export.IMPORTANCE The flagellar type III protein export apparatus coordinates protein export with assembly, which allows the flagellum to be efficiently built at the cell surface. Hook completion is an important morphological checkpoint for the sequential flagellar assembly process. The protein export apparatus switches its substrate specificity from the hook protein to the filament protein upon hook completion. FliK, FlhB, and FlhA are involved in the export-switching process, but the mechanism remains a mystery. By analyzing a slow-cleaving flhB(P270A) mutant, we provide evidence that an interaction between FliK and FlhB induces conformational rearrangements in FlhB, followed by a structural remodeling of the FlhA ring structure that terminates hook assembly and initiates filament formation.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Flagelos/genética , Proteínas de Membrana/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Especificidade por Substrato
9.
ACS Appl Mater Interfaces ; 11(44): 41561-41569, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31594305

RESUMO

In this study, ultralow 1/f noise organic thin-film transistors (OTFTs) based on parylene gate dielectrics modified with triptycene (Trip) modifiers were fabricated. The fabricated OTFTs showed the lowest 1/f noise level among those of previously reported OTFTs. It is well known that 1/f noise causes degradation of signal integrity in analog and digital circuits. However, conventional OTFTs still possess high 1/f noise levels, and the factors that strongly affect 1/f noise are still ambiguous. In this work, the effect of gate dielectric surface on 1/f noise was investigated. First, by comparing OTFTs composed of various channel lengths, we revealed that contact resistance did not affect 1/f noise. Second, we compared parylene OTFTs with and without a self-assembled Trip modifier layer in terms of 1/f noise and trap density of states (Trap DOS). The experiments revealed that a specific Trip modifier layer suppresses the shallow Trap DOS in the OTFTs, leading to a low 1/f noise. Moreover, the 1/f noise level and Trap DOS of various kinds of OTFTs were comprehensively compared, which highlighted that the 1/f noise of OTFTs strongly depends on the gate dielectric surface. Finally, detailed analysis of the gate dielectric interface led us to conclude that the disorder of gate dielectrics and the crystalline quality of semiconductor films are related to shallow Trap DOS, which correlates with 1/f noise.

10.
Genes Cells ; 24(6): 408-421, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30963674

RESUMO

The flagellar protein export apparatus switches its substrate specificity when hook length has reached approximately 55 nm in Salmonella. The C-terminal cytoplasmic domain of FlhB (FlhBC ) is involved in this switching process. FlhBC consists of FlhBCN and FlhBCC polypeptides. FlhBCC has a flexible C-terminal tail (FlhBCCT ). FlhBCC is involved in substrate recognition, and conformational rearrangements of FlhBCN -FlhBCC boundary are postulated to be required for the export switching. However, it remains unknown how it occurs. To clarify this question, we carried out mutational analysis of highly conserved residues in FlhBC . The flhB(E230A) mutation reduced the FlhB function. The flhB(E11S) mutation restored the protein transport activity of the flhB(E230A) mutant to the wild-type level, suggesting that the interaction of FlhBCN with the extreme N-terminal region of FlhB is required for flagellar protein export. The flhB(R320A) mutation affected hydrophobic interaction networks in FlhBCC , thereby increasing insolubility of FlhBC . The R320A mutation also affected the export switching, thereby producing longer hooks with the filament attached. C-terminal truncations of FlhBCCT induced a conformational change of FlhBCN -FlhBCC boundary, resulting in a loose hook length control. We propose that FlhBCCT may control conformational arrangements of FlhBCN -FlhBCC boundary through the hydrophobic interaction networks of FlhBCC .


Assuntos
Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Salmonella typhi/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Transporte Biológico/genética , Análise Mutacional de DNA/métodos , Flagelos/genética , Flagelos/fisiologia , Proteínas de Membrana/metabolismo , Mutação , Domínios Proteicos , Transporte Proteico/genética , Salmonella/genética , Salmonella/metabolismo , Salmonella typhi/metabolismo , Especificidade por Substrato
11.
mBio ; 10(2)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940700

RESUMO

The flagellar motor can spin in both counterclockwise (CCW) and clockwise (CW) directions. The flagellar motor consists of a rotor and multiple stator units, which act as a proton channel. The rotor is composed of the transmembrane MS ring made of FliF and the cytoplasmic C ring consisting of FliG, FliM, and FliN. The C ring is directly involved in rotation and directional switching. The Salmonella FliF-FliG deletion fusion motor missing 56 residues from the C terminus of FliF and 94 residues from the N terminus of FliG keeps a domain responsible for the interaction with the stator intact, but its motor function is reduced significantly. Here, we report the structure and function of the FliF-FliG deletion fusion motor. The FliF-FliG deletion fusion not only resulted in a strong CW switch bias but also affected rotor-stator interactions coupled with proton translocation through the proton channel of the stator unit. The energy coupling efficiency of the deletion fusion motor was the same as that of the wild-type motor. Extragenic suppressor mutations in FliG, FliM, or FliN not only relieved the strong CW switch bias but also increased the motor speed at low load. The FliF-FliG deletion fusion made intersubunit interactions between C ring proteins tighter compared to the wild-type motor, whereas the suppressor mutations affect such tighter intersubunit interactions. We propose that a change of intersubunit interactions between the C ring proteins may be required for high-speed motor rotation as well as direction switching.IMPORTANCE The bacterial flagellar motor is a bidirectional rotary motor for motility and chemotaxis, which often plays an important role in infection. The motor is a large transmembrane protein complex composed of a rotor and multiple stator units, which also act as a proton channel. Motor torque is generated through their cyclic association and dissociation coupled with proton translocation through the proton channel. A large cytoplasmic ring of the motor, called C ring, is responsible for rotation and switching by interacting with the stator, but the mechanism remains unknown. By analyzing the structure and function of the wild-type motor and a mutant motor missing part of the C ring connecting itself with the transmembrane rotor ring while keeping a stator-interacting domain for bidirectional torque generation intact, we found interesting clues to the change in the C ring conformation for the switching and rotation involving loose and tight intersubunit interactions.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flagelos/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Salmonella typhimurium/fisiologia , Movimento (Física) , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Supressão Genética
12.
Structure ; 27(6): 965-976.e6, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31031200

RESUMO

Bacteria use a type III protein export apparatus for construction of the flagellum, which consists of the basal body, the hook, and the filament. FlhA forms a homo-nonamer through its C-terminal cytoplasmic domains (FlhAC) and ensures the strict order of flagellar assembly. FlhAC goes through dynamic domain motions during protein export, but it remains unknown how it occurs. Here, we report that the FlhA(G368C) mutation biases FlhAC toward a closed form, thereby reducing the binding affinity of FlhAC for flagellar export chaperones in complex with their cognate filament-type substrates. The G368C mutations also restrict the conformational flexibility of a linker region of FlhA (FlhAL), suppressing FlhAC ring formation. We propose that interactions of FlhAL with its neighboring subunit converts FlhAC in the ring from a closed conformation to an open one, allowing the chaperon/substrate complexes to bind to the FlhAC ring to form the filament at the hook tip.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Ligação Proteica , Conformação Proteica , Transporte Proteico/genética
13.
Radiol Phys Technol ; 12(1): 118-125, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30666614

RESUMO

Synthetic magnetic resonance imaging (MRI) allows the production of images with any contrast from a single scan after quantification. The combined T2-weighted image (T2WI) and fluid-attenuated inversion recovery (FLAIR) image is expected to have an improved contrast between the normal-appearing white matter (WM) and WM lesion (WML). The purpose of this study was to determine whether optimal T2 contrast-weighted images (SyFLAIR3) comprising the combined T2WI and FLAIR image generated using synthetic MRI could improve contrast in the WM region. Numerical simulations were performed to estimate the contrast-to-noise ratio (CNR) between the WM and WML and cerebrospinal fluid (CSF) ratio at any echo time (TE) using SyFLAIR3. The CNR and CSF ratio for SyFLAIR3 was compared with those for FLAIR and double inversion recovery (DIR) images in ten volunteers. In numerical simulations, the CNR for SyFLAIR3 was increased in the T2WI and FLAIR images with long TEs, and the CSF ratio was decreased on those with short TEs. An in vivo study indicated that the CNR for SyFLAIR3 using T2WI and FLAIR images with an optimized combination of TEs was significantly higher than those for FLAIR and DIR images; whereas, the CSF ratio for the optimized SyFLAIR3 was not significantly different from that for the FLAIR images. The use of SyFLAIR3 improves the contrast within the region of the WM without the need for additional scanning in synthetic MRI.


Assuntos
Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído , Substância Branca/diagnóstico por imagem , Estudos de Viabilidade , Humanos , Modelos Teóricos
14.
Sci Adv ; 4(4): eaao7054, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29707633

RESUMO

The bacterial flagellum is a supramolecular motility machine. Flagellar assembly begins with the basal body, followed by the hook and finally the filament. A carboxyl-terminal cytoplasmic domain of FlhA (FlhAC) forms a nonameric ring structure in the flagellar type III protein export apparatus and coordinates flagellar protein export with assembly. However, the mechanism of this process remains unknown. We report that a flexible linker of FlhAC (FlhAL) is required not only for FlhAC ring formation but also for substrate specificity switching of the protein export apparatus from the hook protein to the filament protein upon completion of the hook structure. FlhAL was required for cooperative ring formation of FlhAC. Alanine substitutions of residues involved in FlhAC ring formation interfered with the substrate specificity switching, thereby inhibiting filament assembly at the hook tip. These observations lead us to propose a mechanistic model for export switching involving structural remodeling of FlhAC.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Proteica , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Microscopia de Força Atômica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , Transporte Proteico , Deleção de Sequência , Relação Estrutura-Atividade
15.
Biophys Physicobiol ; 15: 28-32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29607277

RESUMO

The bacterial flagellar hook is a short, highly curved tubular structure connecting the basal body as a rotary motor and the filament as a helical propeller to function as a universal joint to transmit motor torque to the filament regardless of its orientation. This highly curved form is known to be part of a supercoil as observed in the polyhook structure. The subunit packing interactions in the Salmonella hook structure solved in the straight form gave clear insights into the mechanisms of its bending flexibility and twisting rigidity. Salmonella FlgE consists of four domains, D0, Dc, D1 and D2, arranged from inside to outside of the tube, and an atomic model of the supercoiled hook built to simulate the hook shape observed in the native flagellum suggested that the supercoiled form is stabilized by near-axial interactions of the D2 domains on the inner surface of the supercoil. Here we show that the deletion of domain D2 from FlgE makes the hook straight, providing evidence to support the proposed hook supercoiling mechanism that it is the near-axial interactions between the D2 domains that stabilize the highly curved hook structure.

16.
PLoS One ; 13(3): e0193877, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29505587

RESUMO

The accumulation of findings that most responders in the ultimatum game reject unfair offers provides evidence that humans are driven by social preferences such as preferences for fairness and prosociality. On the other hand, if and how the proposer's behavior is affected by social preferences remains unelucidated. We addressed this question for the first time by manipulating the knowledge that the proposer had about the responder's belief concerning the intentionality of the proposer. In a new game called the "ultimatum game with ambiguous intentions of the proposer (UGAMB)," we made the intentionality of the proposer ambiguous to the recipient. We expected and found that the proposer would make more unfair offers in this new game than in the standard ultimatum game. This expectation can be derived from either the preference-based model or the strategy model of the proposer's giving decision. The additional finding that more unfair giving in the UGAMB was not mediated by the proposer's expectation that the recipient would be more willing to accept unfair offers provided support for the preference-based model. Using a psychological measure of cognitive control, the preference-based model received additional support through a conceptual replication of the previous finding that cognitive control of intuitive drive for prosociality in the dictator game, rather than mind reading in the ultimatum game, is responsible for the difference in giving between the two games.


Assuntos
Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Feminino , Jogos Experimentais , Humanos , Intenção , Masculino , Comportamento Social
17.
Sci Rep ; 8(1): 1787, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379125

RESUMO

The FliI ATPase of the flagellar type III protein export apparatus forms the FliH2FliI complex along with its regulator FliH. The FliH2FliI complex is postulated to bring export substrates from the cytoplasm to the docking platform made of FlhA and FlhB although not essential for flagellar protein export. Here, to clarify the role of the FliH2FliI complex in flagellar assembly, we analysed the effect of FliH and FliI deletion on flagellar protein export and assembly. The hook length was not controlled properly in the ∆fliH-fliI flhB(P28T) mutant compared to wild-type cells, whose hook length is controlled to about 55 nm within 10% error. The FlhA(F459A) mutation increased the export level of the hook protein FlgE and the ruler protein FliK by about 10-fold and 3-fold, respectively, and improved the hook length control in the absence of FliH and FliI. However, the ∆fliH-fliI flhB(P28T) flhA(F459A) mutant did not produce flagellar filaments efficiently, and a large amount of flagellin monomers were leaked out into the culture media. Neither the hook length control nor flagellin leakage was affected by the FlhB(P28T) and FlhA(F459A) mutations. We will discuss a hierarchical protein export mechanism of the bacterial flagellum.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Salmonella/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Flagelos/genética , Flagelina/genética , Flagelina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação/genética , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Salmonella/genética
18.
Biochem Biophys Res Commun ; 495(2): 1789-1794, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29229393

RESUMO

The bacterial flagellar hook is a short, curved tubular structure made of FlgE. The hook connects the basal body as a rotary motor and the filament as a helical propeller and functions as a universal joint to smoothly transmit torque produced by the motor to the filament. Salmonella FlgE consists of D0, Dc, D1 and D2 domains. Axial interactions between a triangular loop of domain D1 (D1-loop) and domain D2 are postulated to be responsible for hook supercoiling. In contrast, Bacillus FlgE lacks the D1-loop and domain D2. Here, to clarify the roles of the D1-loop and domain D2 in the mechanical function, we carried out deletion analysis of Salmonella FlgE. A deletion of the D1-loop conferred a loss-of-function phenotype whereas that of domain D2 did not. The D1-loop deletion inhibited hook polymerization. Suppressor mutations of the D1-loop deletion was located within FlgD, which acts as the hook cap to promote hook assembly. This suggests a possible interaction between the D1-loop of FlgE and FlgD. Suppressor mutant cells produced straight hooks, but retained the ability to form a flagellar bundle behind a cell body, suggesting that the loop deletion does not affect the bending flexibility of the Salmonella hook.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Flagelos/química , Flagelos/fisiologia , Flagelos/ultraestrutura , Genes Bacterianos , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Mutação , Domínios Proteicos , Multimerização Proteica , Salmonella/genética , Salmonella/fisiologia , Deleção de Sequência , Homologia Estrutural de Proteína
19.
Mol Microbiol ; 105(4): 572-588, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28557186

RESUMO

The bacterial flagellar export switching machinery consists of a ruler protein, FliK, and an export switch protein, FlhB and switches substrate specificity of the flagellar type III export apparatus upon completion of hook assembly. An interaction between the C-terminal domain of FliK (FliKC ) and the C-terminal cytoplasmic domain of FlhB (FlhBC ) is postulated to be responsible for this switch. FliKC has a compactly folded domain termed FliKT3S4 (residues 268-352) and an intrinsically disordered region composed of the last 53 residues, FliKCT (residues 353-405). Residues 301-350 of FliKT3S4 and the last five residues of FliKCT are critical for the switching function of FliK. FliKCT is postulated to regulate the interaction of FliKT3S4 with FlhBC , but it remains unknown how. Here we report the role of FliKCT in the export switching mechanism. Systematic deletion analyses of FliKCT revealed that residues of 351-370 are responsible for efficient switching of substrate specificity of the export apparatus. Suppressor mutant analyses showed that FliKCT coordinates FliKT3S4 action with the switching. Site-directed photo-cross-linking experiments showed that Val-302 and Ile-304 in the hydrophobic core of FliKT3S4 bind to FlhBC . We propose that FliKCT may induce conformational rearrangements of FliKT3S4 to bind to FlhBC .


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Especificidade por Substrato/genética , Sequência de Aminoácidos , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Flagelos/microbiologia , Proteínas de Membrana/metabolismo , Domínios Proteicos , Estrutura Terciária de Proteína , Especificidade por Substrato/fisiologia
20.
Sci Rep ; 7: 46723, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429800

RESUMO

The bacterial flagellar hook connects the helical flagellar filament to the rotary motor at its base. Bending flexibility of the hook allows the helical filaments to form a bundle behind the cell body to produce thrust for bacterial motility. The hook protein FlgE shows considerable sequence and structural similarities to the distal rod protein FlgG; however, the hook is supercoiled and flexible as a universal joint whereas the rod is straight and rigid as a drive shaft. A short FlgG specific sequence (GSS) has been postulated to confer the rigidity on the FlgG rod, and insertion of GSS at the position between Phe-42 and Ala-43 of FlgE actually made the hook straight. However, it remains unclear whether inserted GSS confers the rigidity as well. Here, we provide evidence that insertion of GSS makes the hook much more rigid. The GSS insertion inhibited flagellar bundle formation behind the cell body, thereby reducing motility. This indicates that the GSS insertion markedly reduced the bending flexibility of the hook. Therefore, we propose that the inserted GSS makes axial packing interactions of FlgE subunits much tighter in the hook to suppress axial compression and extension of the protofilaments required for bending flexibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...