Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38785608

RESUMO

In this work, we lay the foundations for computing the behavior of a quantum heat engine whose working medium consists of an ensemble of non-harmonic quantum oscillators. In order to enable this analysis, we develop a method based on the Schrödinger picture. We investigate different possible choices on the basis of expanding the density operator, as it is crucial to select a basis that will expedite the numerical integration of the time-evolution equation without compromising the accuracy of the computed results. For this purpose, we developed an estimation technique that allows us to quantify the error that is unavoidably introduced when time-evolving the density matrix expansion over a finite-dimensional basis. Using this and other ways of evaluating a specific choice of basis, we arrive at the conclusion that the basis of eigenstates of a harmonic Hamiltonian leads to the best computational performance. Additionally, we present a method to quantify and reduce the error that is introduced when extracting relevant physical information about the ensemble of oscillators. The techniques presented here are specific to quantum heat cycles; the coexistence within a cycle of time-dependent Hamiltonian and coupling with a thermal reservoir are particularly complex to handle for the non-harmonic case. The present investigation is paving the way for numerical analysis of non-harmonic quantum heat machines.

2.
Nature ; 609(7928): 695-700, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131038

RESUMO

Electrostriction is a property of dielectric materials whereby an applied electric field induces a mechanical deformation proportional to the square of that field. The magnitude of the effect is usually minuscule (<10-19 m2 V-2 for simple oxides). However, symmetry-breaking phenomena at the interfaces can offer an efficient strategy for the design of new properties1,2. Here we report an engineered electrostrictive effect via the epitaxial deposition of alternating layers of Gd2O3-doped CeO2 and Er2O3-stabilized δ-Bi2O3 with atomically controlled interfaces on NdGaO3 substrates. The value of the electrostriction coefficient achieved is 2.38 × 10-14 m2 V-2, exceeding the best known relaxor ferroelectrics by three orders of magnitude. Our theoretical calculations indicate that this greatly enhanced electrostriction arises from coherent strain imparted by interfacial lattice discontinuity. These artificial heterostructures open a new avenue for the design and manipulation of electrostrictive materials and devices for nano/micro actuation and cutting-edge sensors.


Assuntos
Óxidos , Óxidos/química
3.
Sci Rep ; 11(1): 16607, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400665

RESUMO

We consider the motion of an electromagnetic vibrational energy harvester (EMVEH) as function of the initial position and velocity and show that this displays a classical chaotic dynamical behavior. The EMVEH considered consists of three coaxial cylindrical permanent magnets and two coaxial coils. The polarities of the three magnets are chosen in such a way that the central magnet floats, with its lateral motion being prevented by enclosion in a hollow plastic tube. The motion of the floating magnet, caused by e.g. environmental vibrations, induces a current in the coils allowing electrical energy to be harvested. We analyze the behavior of the system using a numerical model employing experimentally verified expressions of the force between the magnets and the damping force between the floating magnet and the coils. We map out the phase space of the motion of the system with and without gravity, and show that this displays a fractal-like behavior and that certain driving frequencies and initial conditions allow a large power to be harvested, and that more stable states than two exists. Finally, we show that at leasts fifth order polynomial approximation is necessary to approximate the magnet-magnet force and correctly predict the system behavior.

4.
Entropy (Basel) ; 22(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33286828

RESUMO

In this work we considered the quantum Otto cycle within an optimization framework. The goal was maximizing the power for a heat engine or maximizing the cooling power for a refrigerator. In the field of finite-time quantum thermodynamics it is common to consider frictionless trajectories since these have been shown to maximize the work extraction during the adiabatic processes. Furthermore, for frictionless cycles, the energy of the system decouples from the other degrees of freedom, thereby simplifying the mathematical treatment. Instead, we considered general limit cycles and we used analytical techniques to compute the derivative of the work production over the whole cycle with respect to the time allocated for each of the adiabatic processes. By doing so, we were able to directly show that the frictionless cycle maximizes the work production, implying that the optimal power production must necessarily allow for some friction generation so that the duration of the cycle is reduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...