Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 259(1)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552528

RESUMO

Prior research demonstrated that glucagon has protective roles against inflammation, but its effect on the resolution of inflammation remains elusive. Using in vitro and in vivo approaches, this study aimed to investigate the pro-resolving potential of glucagon on pulmonary neutrophilic inflammation caused by lipopolysaccharide. Lipopolysaccharide induced an increase in the proportions of neutrophils positives to glucagon receptor (GcgR) in vitro. In addition, lipopolysaccharide induced an increase in the neutrophil accumulation and expression of GcgR by the inflammatory cells in the lungs, however, without altering glucagon levels. Intranasal treatment with glucagon, at the peak of neutrophilic inflammation, reduced the neutrophil number in the bronchoalveolar lavage (BAL), and lung tissue within 24 h. The reduction of neutrophilic inflammation provoked by glucagon was accompanied by neutrophilia in the blood, an increase in the apoptosis rate of neutrophils in the BAL, enhance in the pro-apoptotic Bax protein expression, and decrease in the anti-apoptotic Bcl-2 protein levels in the lung. Glucagon also induced a rise in the cleavage of caspase-3 in the lungs; however, it was not significant. Glucagon inhibited the levels of IL-1ß and TNF-α while increasing the content of pro-resolving mediators transforming growth factor (TGF-ß1) and PGE2 in the BAL and lung. Finally, glucagon inhibited lipopolysaccharide-induced airway hyper-reactivity, as evidenced by the reduction in lung elastance values in response to methacholine. In conclusion, glucagon-induced resolution of neutrophilic inflammation by promoting cessation of neutrophil migration and a rise of neutrophil apoptosis and the levels of pro-resolving mediators TGF-ß1 and PGE2.


Assuntos
Glucagon , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Glucagon/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Dinoprostona/farmacologia , Pulmão , Inflamação/metabolismo , Neutrófilos/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 1040040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465619

RESUMO

Prior investigation shows an increase in the activity of both hypothalamus-pituitary-adrenal (HPA) axis and the renin-angiotensin system (RAS) in diabetic patients. Moreover, activation of angiotensin-II type 1 receptor (AT1) has been associated with adrenal steroidogenesis. This study investigates the role of RAS on the overproduction of corticosterone in diabetic mice. Diabetes was induced by intravenous injection of alloxan into fasted Swiss-webster mice. Captopril (angiotensin-converting enzyme inhibitor), Olmesartan (AT1 receptor antagonist), CGP42112A (AT2 receptor agonist) or PD123319 (AT2 receptor antagonist) were administered daily for 14 consecutive days, starting 7 days post-alloxan. Plasma corticosterone was evaluated by ELISA, while adrenal gland expressions of AT1 receptor, AT2 receptor, adrenocorticotropic hormone receptor MC2R, pro-steroidogenic enzymes steroidogenic acute regulatory protein (StAR), and 11ß-hydroxysteroid dehydrogenase type 1 (11ßHSD1) were assessed using immunohistochemistry or western blot. Diabetic mice showed adrenal gland overexpression of AT1 receptor, MC2R, StAR, and 11ßHSD1 without altering AT2 receptor levels, all of which were sensitive to Captopril or Olmesartan treatment. In addition, PD123319 blocked the ability of Olmesartan to reduce plasma corticosterone levels in diabetic mice. Furthermore, CGP42112A significantly decreased circulating corticosterone levels in diabetic mice, without altering the overexpression of MC2R and StAR in the adrenal glands. Our findings revealed that inhibition of both angiotensin synthesis and AT1 receptor activity reduced the high production of corticosterone in diabetic mice via the reduction of MC2R signaling expression in the adrenal gland. Furthermore, the protective effect of Olmesartan on the overproduction of corticosterone by adrenals in diabetic mice depends on both AT1 receptor blockade and AT2 receptor activation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Sistema Renina-Angiotensina , Glucocorticoides , Corticosterona , Captopril/farmacologia , Aloxano
3.
Front Immunol ; 12: 633540, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295325

RESUMO

Sepsis is one of the most common comorbidities observed in diabetic patients, associated with a deficient innate immune response. Recently, we have shown that glucagon possesses anti-inflammatory properties. In this study, we investigated if hyperglucagonemia triggered by diabetes might reduce the migration of neutrophils, increasing sepsis susceptibility. 21 days after diabetes induction by intravenous injection of alloxan, we induced moderate sepsis in Swiss-Webster mice through cecum ligation and puncture (CLP). The glucagon receptor (GcgR) antagonist des-his1-[Glu9]-glucagon amide was injected intraperitoneally 24h and 1h before CLP. We also tested the effect of glucagon on CXCL1/KC-induced neutrophil migration to the peritoneal cavity in mice. Neutrophil chemotaxis in vitro was tested using transwell plates, and the expression of total PKA and phospho-PKA was evaluated by western blot. GcgR antagonist restored neutrophil migration, reduced CFU numbers in the peritoneal cavity and improved survival rate of diabetic mice after CLP procedure, however, the treatment did no alter hyperglycemia, CXCL1/KC plasma levels and blood neutrophilia. In addition, glucagon inhibited CXCL1/KC-induced neutrophil migration to the peritoneal cavity of non-diabetic mice. Glucagon also decreased the chemotaxis of neutrophils triggered by CXCL1/KC, PAF, or fMLP in vitro. The inhibitory action of glucagon occurred in parallel with the reduction of CXCL1/KC-induced actin polymerization in neutrophils in vitro, but not CD11a and CD11b translocation to cell surface. The suppressor effect of glucagon on CXCL1/KC-induced neutrophil chemotaxis in vitro was reversed by pre-treatment with GcgR antagonist and adenylyl cyclase or PKA inhibitors. Glucagon also increased PKA phosphorylation directly in neutrophils in vitro. Furthermore, glucagon impaired zymosan-A-induced ROS production by neutrophils in vitro. Human neutrophil chemotaxis and adherence to endothelial cells in vitro were inhibited by glucagon treatment. According to our results, this inhibition was independent of CD11a and CD11b translocation to neutrophil surface or neutrophil release of CXCL8/IL-8. Altogether, our results suggest that glucagon may be involved in the reduction of neutrophil migration and increased susceptibility to sepsis in diabetic mice. This work collaborates with better understanding of the increased susceptibility and worsening of sepsis in diabetics, which can contribute to the development of new effective therapeutic strategies for diabetic septic patients.


Assuntos
Movimento Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Suscetibilidade a Doenças/etiologia , Glucagon/administração & dosagem , Neutrófilos/efeitos dos fármacos , Sepse/etiologia , Sepse/imunologia , Adulto , Animais , Movimento Celular/imunologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/microbiologia , Feminino , Glucagon/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Neutrófilos/imunologia
4.
Front Immunol ; 11: 580598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362766

RESUMO

Asthma represents one of the leading chronic diseases worldwide and causes a high global burden of death and disability. In asthmatic patients, the exacerbation and chronification of the inflammatory response are often related to a failure in the resolution phase of inflammation. We reviewed the role of the main arachidonic acid (AA) specialized pro-resolving mediators (SPMs) in the resolution of chronic lung inflammation of asthmatics. AA is metabolized by two classes of enzymes, cyclooxygenases (COX), which produce prostaglandins (PGs) and thromboxanes, and lypoxygenases (LOX), which form leukotrienes and lipoxins (LXs). In asthma, two primary pro-resolving derived mediators from COXs are PGE2 and the cyclopentenone prostaglandin15-Deoxy-Delta-12,14-PGJ2 (15d-PGJ2) while from LOXs are the LXA4 and LXB4. In different models of asthma, PGE2, 15d-PGJ2, and LXs reduced lung inflammation and remodeling. Furthermore, these SPMs inhibited chemotaxis and function of several inflammatory cells involved in asthma pathogenesis, such as eosinophils, and presented an antiremodeling effect in airway epithelial, smooth muscle cells and fibroblasts in vitro. In addition, PGE2, 15d-PGJ2, and LXs are all able to induce macrophage reprogramming to an alternative M2 pro-resolving phenotype in vitro and in vivo. Although PGE2 and LXA4 showed some beneficial effects in asthmatic patients, there are limitations to their clinical use, since PGE2 caused side effects, while LXA4 presented low stability. Therefore, despite the strong evidence that these AA-derived SPMs induce resolution of both inflammatory response and tissue remodeling in asthma, safer and more stable analogs must be developed for further clinical investigation of their application in asthma treatment.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ácidos Araquidônicos/uso terapêutico , Asma/tratamento farmacológico , Eosinófilos/imunologia , Inflamação/tratamento farmacológico , Remodelação das Vias Aéreas , Animais , Dinoprostona/uso terapêutico , Humanos , Mediadores da Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...