Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 46(6): 1822-1831, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28112329

RESUMO

A series of (DIPPnacnac)CaN(SiMe3)2·S complexes (DIPPnacnac = HC[C(Me)N(2,6-iPr-C6H3)]2; S = solvent) could be obtained by the addition of S = THF, DME or N-Me-morpholine (Morph) to (DIPPnacnac)CaN(SiMe3)2·OEt2 or (DIPPnacnac)CaN(SiMe3)2. Crystal structures for complexes with S = DME and Morph are compared to literature-known structures with S = none, THF or Et2O. Bulkier and weaker Lewis bases like the tertiary amines Et3N, TMEDA and DABCO did not interact with (DIPPnacnac)CaN(SiMe3)2. The reaction of (DIPPnacnac)CaN(SiMe3)2 with PhSiH3 gave conversion to a calcium hydride complex that dismutated in (DIPPnacnac)2Ca and CaH2. The reaction of (DIPPnacnac)CaN(SiMe3)2·S with PhSiH3 gave [(DIPPnacnac)CaH·S]2 for S = THF, Et2O or N-Me-morpholine (Morph). For S = DME, high reaction temperatures were needed and dismutation into (DIPPnacnac)2Ca and CaH2 was observed. Extensive NMR investigations (VT-NMR and PGSE) confirm the dimeric nature of [(DIPPnacnac)CaH·THF]2 in aromatic solvents or in THF. Thermal decomposition of [(DIPPnacnac)CaH·THF]2 (release of H2 at 200 °C) is compared to that of Mg and Zn analogues. Weakly coordinating Et2O in [(DIPPnacnac)CaH·OEt2]2 could be replaced by THF, Morph or DABCO but not with Et3N. The addition of TMEDA led to the formation of CaH2 and unidentified products. The addition of DME led to the decomposition of Et2O and complex [(DIPPnacnac)CaOEt]2 was obtained. Crystal structures of the following compounds are presented: (DIPPnacnac)CaN(SiMe3)2·S (S = Morph, DME), [(DIPPnacnac)CaH·S]2 (S = Et2O, Morph and DABCO) and [(DIPPnacnac)CaOEt]2. Although bulky ligands have long been thought to be the key to the stabilization of calcium hydride complexes, the presence of a polar, strongly coordinating, co-solvent is also crucial.

2.
Chemistry ; 21(32): 11452-61, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26120024

RESUMO

Reaction of the calcium hydride complex (DIPPnacnac-CaH⋅THF)2 with pyridine is much faster and selective than that of the corresponding magnesium hydride complex (DIPPnacnac = [(2,6-iPr2 C6 H3 )NC(Me)]2 CH). With a range of pyridine, picoline and quinoline substrates, exclusive transfer of the hydride ligand to the 2-position is observed and also at higher temperatures no 1,2→1,4 isomerization is found. The heteroleptic product DIPPnacnac-Ca(1,2-dihydropyridide)⋅(pyridine) shows fast ligand exchange into homoleptic calcium complexes and therefore could not be isolated. Calcium hydride reduction of isoquinoline gave well-defined homoleptic products which could be characterized by X-ray diffraction: Ca(1,2-dihydroisoquinolide)2 ⋅(isoquinoline)4 and Ca3 (1,2-dihydroisoquinolide)6 ⋅(isoquinoline)6 . The striking selectivity difference in the dearomatization of pyridines by Mg or Ca complexes could be explained by DFT theory and was utilized in catalysis. Whereas hydroboration of pyridine with pinacol borane with a calcium hydride catalyst gave only minor conversion, the hydrosilylation of pyridine and quinolines with PhSiH3 yields exclusively 1,2-dihydropyridine and 1,2-dihydroquinoline silanes with 80-90 % conversion. Similar results can be achieved with the catalyst Ca[N(SiMe3 )2 ]2 ⋅(THF)2 . These calcium complexes represent the first catalysts for the 1,2-selective hydrosilylation of pyridines.

3.
Chemistry ; 20(35): 11204-13, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25066656

RESUMO

In analogy to the previously reported tetranuclear magnesium hydride cluster with a bridged dianionic bis-ß-diketiminate ligand, a related zinc hydride cluster has been prepared. The crystal structures of these magnesium and zinc hydride complexes are similar: the metal atoms are situated at the corners of a tetrahedron in which the vertices are bridged either by dianionic bis-ß-diketiminate ligands or hydride ions. Both structures are retained in solution and show examples of H(-)⋅⋅⋅H(-) NMR coupling (Mg: 8.5 Hz; Zn: 16.0 Hz). The zinc hydride cluster [NN-(ZnH)2]2 thermally decomposes at 90 °C and releases 1.8 equivalents of H2 . In contrast to magnesium hydride clusters, there is no apparent relationship between cluster size and thermal decomposition temperature for the zinc hydrides. DFT calculations reproduced the structure of the zinc hydride cluster reasonably well and charge density analysis showed no bond paths between the hydride ions. This contrasts with calculations on the analogous magnesium hydride cluster in which a counter-intuitive H(-)⋅⋅⋅H(-) bond path was observed. Forcing a reduced H(-)⋅⋅⋅H(-) distance in the zinc hydride cluster, however, gave rise to a H(-)⋅⋅⋅H(-) bond path. Such weak interactions could play a role in H2 desorption. The presumed molecular product after H2 release, a Zn(I) cluster, could not be characterized experimentally but DFT calculations predicted a cluster with two localized Zn-Zn bonds.

4.
Dalton Trans ; 43(38): 14284-90, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24829166

RESUMO

Reaction of PYR-(MgnBu)2, in which PYR is 2,6-[(DIPP)NC(Me)CHC(Me)N-]2-pyridine and DIPP is 2,6-iPr2-phenyl, with (DIPP)NH2BH3 gave PYR-[MgNH(DIPP)BH3]2 (56%) which was characterized by crystal structure determination. Addition of THF resulted in ß-H elimination and formation of PYR-[MgNH(DIPP)BH3](MgH)·THF (57%), likewise characterized by crystal structure determination. Conversion of the second amidoborane anion in H(-) could not be achieved. Reaction of PYR-(MgnBu)2 with PhSiH3 gave PYR-(MgH)2, which crystallized as a dimer. The structure of [PYR-(MgH)2]2 shows an 8-membered ring of Mg(2+) and H(-) ions. Thermal decomposition at 130 °C releases one equivalent of H2, i.e. 50% of the expected value. Nucleophilic attack at the para-position and reduction of the pyridylene bridge might explain reduced H2 release.

5.
Chemistry ; 19(26): 8478-89, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23657915

RESUMO

A new tetranuclear magnesium hydride cluster, [{NN-(MgH)2}2], which was based on a N-N-coupled bis-ß-diketiminate ligand (NN(2-)), was obtained from the reaction of [{NN-(MgnBu)2}2] with PhSiH3. Its crystal structure reveals an almost-tetrahedral arrangement of Mg atoms and two different sets of hydride ions, which give rise to a coupling in the NMR spectrum (J = 8.5 Hz). To shed light on the relationship between the cluster size and H2 release, the thermal decomposition of [{NN-(MgH)2}2] and two closely related systems that were based on similar ligands, that is, an octanuclear magnesium hydride cluster and a dimeric magnesium hydride species, have been investigated in detail. A lowering of the H2-desorption temperature with decreasing cluster size is observed, in line with previously reported theoretical predictions on (MgH2)n model systems. Deuterium-labeling studies further demonstrate that the released H2 solely originates from the oxidative coupling of two hydride ligands and not from other hydrogen sources, such as the ß-diketiminate ligands. Analysis of the DFT-computed electron density in [{NN-(MgH)2}2] reveals a counterintuitive interaction between two formally closed-shell H(-) ligands that are separated by 3.106 Å. This weak interaction could play an important role in H2 desorption. Although the molecular product after H2 release could not be characterized experimentally, DFT calculations on the proposed decomposition product, that is, the low-valence tetranuclear Mg(I) cluster [(NN-Mg2)2], predict a structure with two almost-parallel, localized Mg-Mg bonds. As in a previously reported ß-diketiminate Mg(I) dimer, the Mg-Mg bond is not characterized by a bond critical point, but instead displays a local maximum of electron density midway between the atoms, that is, a non-nuclear attractor (NNA). Interestingly, both of the NNAs in [(NN-Mg2)2] are connected through a bond path that suggests that there is bonding between all four Mg(I) atoms.

6.
Chemistry ; 19(5): 1629-36, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23292919

RESUMO

After the lithiation of PYR-H(2) (PYR(2-) =[{NC(Me)C(H)C(Me)NC(6)H(3)(iPr)(2)}(2)(C(5)H(3)N)](2-)), which is the precursor of an expanded ß-diketiminato ligand system with two binding pockets, its reaction with [NiBr(2) (dme)] led to a dinuclear nickel(II)-bromide complex, [(PYR)Ni(µ-Br)NiBr] (1). The bridging bromide ligand could be selectively exchanged for a thiolate ligand to yield [(PYR)Ni(µ-SEt)NiBr] (3). In an attempt to introduce hydride ligands, both compounds were treated with KHBEt(3). This treatment afforded [(PYR)Ni(µ-H)Ni] (2), which is a mixed valent Ni(I)-µ-H-Ni(II) complex, and [(PYR-H)Ni(µ-SEt)Ni] (4), in which two tricoordinated Ni(I) moieties are strongly antiferromagnetically coupled. Compound 4 is the product of an initial salt metathesis, followed by an intramolecular redox process that separates the original hydride ligand into two electrons, which reduce the metal centres, and a proton, which is trapped by one of the binding pockets, thereby converting it into an olefin ligand on one of the Ni(I) centres. The addition of a mild acid to complex 4 leads to the elimination of H(2) and the formation of a Ni(II)Ni(II) compound, [(PYR)Ni(µ-SEt)NiOTf] (5), so that the original Ni(II) (µ-SEt)Ni(II) X core of compound 3 is restored. All of these compounds were fully characterized, including by X-ray diffraction, and their molecular structures, as well as their formation processes, are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...