Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 12967-12981, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571103

RESUMO

We demonstrate efficient anti reflection coatings based on adiabatic index matching obtained via nano-imprint lithography. They exhibit high total transmission, achromaticity (99.5% < T < 99.8% from 390 to 900 nm and 99% < T < 99.5% from 800 to 1600 nm) and wide angular acceptance (T > 99% up to 50 degrees). Our devices show high laser-induced damage thresholds in the sub-picosecond (>5 J/cm2 at 1030 nm, 500 fs), nanosecond (>150 J/cm2 at 1064 nm, 12 ns and >100 J/cm2 at 532 nm, 12 ns) regimes, and low absorption in the CW regime (<1.3 ppm at 1080 nm), close to those of the fused silica substrate.

3.
ACS Photonics ; 10(8): 2808-2815, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37602292

RESUMO

The quality factor, Q, of photonic resonators permeates most figures of merit in applications that rely on cavity-enhanced light-matter interaction such as all-optical information processing, high-resolution sensing, or ultralow-threshold lasing. As a consequence, large-scale efforts have been devoted to understanding and efficiently computing and optimizing the Q of optical resonators in the design stage. This has generated large know-how on the relation between physical quantities of the cavity, e.g., Q, and controllable parameters, e.g., hole positions, for engineered cavities in gaped photonic crystals. However, such a correspondence is much less intuitive in the case of modes in disordered photonic media, e.g., Anderson-localized modes. Here, we demonstrate that the theoretical framework of quasinormal modes (QNMs), a non-Hermitian perturbation theory for shifting material boundaries, and a finite-element complex eigensolver provide an ideal toolbox for the automated shape optimization of Q of a single photonic mode in both ordered and disordered environments. We benchmark the non-Hermitian perturbation formula and employ it to optimize the Q-factor of a photonic mode relative to the position of vertically etched holes in a dielectric slab for two different settings: first, for the fundamental mode of L3 cavities with various footprints, demonstrating that the approach simultaneously takes in-plane and out-of-plane losses into account and leads to minor modal structure modifications; and second, for an Anderson-localized mode with an initial Q of 200, which evolves into a completely different mode, displaying a threefold reduction in the mode volume, a different overall spatial location, and, notably, a 3 order of magnitude increase in Q.

4.
Opt Express ; 31(5): 9007-9017, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36860003

RESUMO

Dewetted, SiGe nanoparticles have been successfully exploited for light management in the visible and near-infrared, although their scattering properties have been so far only qualitatively studied. Here, we demonstrate that the Mie resonances sustained by a SiGe-based nanoantenna under tilted illumination, can generate radiation patterns in different directions. We introduce a novel dark-field microscopy setup that exploits the movement of the nanoantenna under the objective lens to spectrally isolate Mie resonances contribution to the total scattering cross-section during the same measurement. The knowledge of islands' aspect ratio is then benchmarked by 3D, anisotropic phase-field simulations and contributes to a correct interpretation of the experimental data.

5.
Phys Rev Lett ; 125(12): 126101, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33016725

RESUMO

Materials featuring anomalous suppression of density fluctuations over large length scales are emerging systems known as disordered hyperuniform. The underlying hidden order renders them appealing for several applications, such as light management and topologically protected electronic states. These applications require scalable fabrication, which is hard to achieve with available top-down approaches. Theoretically, it is known that spinodal decomposition can lead to disordered hyperuniform architectures. Spontaneous formation of stable patterns could thus be a viable path for the bottom-up fabrication of these materials. Here, we show that monocrystalline semiconductor-based structures, in particular Si_{1-x}Ge_{x} layers deposited on silicon-on-insulator substrates, can undergo spinodal solid-state dewetting featuring correlated disorder with an effective hyperuniform character. Nano- to micrometric sized structures targeting specific morphologies and hyperuniform character can be obtained, proving the generality of the approach and paving the way for technological applications of disordered hyperuniform metamaterials. Phase-field simulations explain the underlying nonlinear dynamics and the physical origin of the emerging patterns.

6.
Phys Rev Lett ; 124(12): 123902, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281836

RESUMO

Recent theories proposed a deep revision of the well-known expression for the Purcell factor, with counterintuitive effects, such as complex modal volumes and non-Lorentzian local density of states. We experimentally demonstrate these predictions in tailored coupled cavities on photonic crystal slabs with relatively low optical losses. Near-field hyperspectral imaging of quantum dot photoluminescence is proved to be a direct tool for measuring the line shape of the local density of states. The experimental results clearly evidence non-Lorentzian character, in perfect agreement with numerical and theoretical predictions. Spatial maps with deep subwavelength resolution of the real and imaginary parts of the complex mode volumes are presented. The generality of these results is confirmed by an additional set of far-field and time-resolved experiments in cavities with larger modal volume and higher quality factors.

7.
Opt Express ; 27(26): 37579-37589, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878537

RESUMO

We propose a force sensor, with optical detection, based on a reconfigurable multi-cavity photonic molecule distributed over two parallel photonic crystal membranes. The system spectral behaviour is described with an analytical model based on coupled mode theory and validated by finite difference time domain simulations. The deformation of the upper photonic crystal membrane, due to a localized vertical force, is monitored by the relative spectral positions of the photonic molecule resonances. The proposed system can act both as force sensor, with pico-newton sensitivity, able to identify the position where the force is applied, and as torque sensor able to measure the torsion of the membrane along two perpendicular directions.

8.
Adv Mater ; 31(12): e1807274, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30714221

RESUMO

Random dielectrics defines a class of non-absorbing materials where the index of refraction is randomly arranged in space. Whenever the transport mean free path is sufficiently small, light can be confined in modes with very small volume. Random photonic modes have been investigated for their basic physical insights, such as Anderson localization, and recently several applications have been envisioned in the field of renewable energies, telecommunications, and quantum electrodynamics. An advantage for optoelectronics and quantum source integration offered by random systems is their high density of photonic modes, which span a large range of spectral resonances and spatial distributions, thus increasing the probability to match randomly distributed emitters. Conversely, the main disadvantage is the lack of deterministic engineering of one or more of the many random photonic modes achieved. This issue is solved by demonstrating the capability to electrically and mechanically control the random modes at telecom wavelengths in a 2D double membrane system. Very large and reversible mode tuning (up to 50 nm), both toward shorter or longer wavelength, is obtained for random modes with modal volumes of the order of few tens of (λ/n)3 .

9.
Adv Mater ; 30(21): e1705450, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29611235

RESUMO

Many of the most advanced applications of semiconductor quantum dots (QDs) in quantum information technology require a fine control of the QDs' position and confinement potential, which cannot be achieved with conventional growth techniques. Here, a novel and versatile approach for the fabrication of site-controlled QDs is presented. Hydrogen incorporation in GaAsN results in the formation of N-2H and N-2H-H complexes, which neutralize all the effects of N on GaAs, including the N-induced large reduction of the bandgap energy. Starting from a fully hydrogenated GaAs/GaAsN:H/GaAs quantum well, the NH bonds located within the light spot generated by a scanning near-field optical microscope tip are broken, thus obtaining site-controlled GaAsN QDs surrounded by a barrier of GaAsN:H (laterally) and GaAs (above and below). By adjusting the laser power density and exposure time, the optical properties of the QDs can be finely controlled and optimized, tuning the quantum confinement energy over more than 100 meV and resulting in the observation of single-photon emission from both the exciton and biexciton recombinations. This novel fabrication technique reaches a position accuracy <100 nm and it can easily be applied to the realization of more complex nanostructures.

10.
Nat Commun ; 9(1): 396, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374174

RESUMO

The optical behavior of coupled systems, in which the breaking of parity and time-reversal symmetry occurs, is drawing increasing attention to address the physics of the exceptional point singularity, i.e., when the real and imaginary parts of the normal-mode eigenfrequencies coincide. At this stage, fascinating phenomena are predicted, including electromagnetic-induced transparency and phase transitions. To experimentally observe the exceptional points, the near-field coupling to waveguide proposed so far was proved to work only in peculiar cases. Here, we extend the interference detection scheme, which lies at the heart of the Fano lineshape, by introducing generalized Fano lineshapes as a signature of the exceptional point occurrence in resonant-scattering experiments. We investigate photonic molecules and necklace states in disordered media by means of a near-field hyperspectral mapping. Generalized Fano profiles in material science could extend the characterization of composite nanoresonators, semiconductor nanostructures, and plasmonic and metamaterial devices.


Assuntos
Nanoestruturas , Fenômenos Ópticos , Fótons , Semicondutores , Análise Espectral
11.
Sci Rep ; 5: 9606, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26045401

RESUMO

Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the "campanile tip", a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.

12.
Nat Mater ; 13(7): 720-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24836733

RESUMO

Disordered photonic materials can diffuse and localize light through random multiple scattering, offering opportunities to study mesoscopic phenomena, control light-matter interactions, and provide new strategies for photonic applications. Light transport in such media is governed by photonic modes characterized by resonances with finite spectral width and spatial extent. Considerable steps have been made recently towards control over the transport using wavefront shaping techniques. The selective engineering of individual modes, however, has been addressed only theoretically. Here, we experimentally demonstrate the possibility to engineer the confinement and the mutual interaction of modes in a two-dimensional disordered photonic structure. The strong light confinement is achieved at the fabrication stage by an optimization of the structure, and an accurate and local tuning of the mode resonance frequencies is achieved via post-fabrication processes. To show the versatility of our technique, we selectively control the detuning between overlapping localized modes and observe both frequency crossing and anti-crossing behaviours, thereby paving the way for the creation of open transmission channels in strongly scattering media.

13.
Opt Express ; 22(5): 4953-9, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663834

RESUMO

We propose a way to engineer the design of photonic molecules, realized by coupling two photonic crystal cavities, that allows an accurate control of the parity of their ground states. The spatial distribution of the fundamental mode of photonic molecules can be tuned from a bonding to an antibonding character by a local and continuous modification of the dielectric environment in between the two coupled cavities. In the systems that we investigate the transition could be experimentally accomplished by post-fabrication methods in either a reversible or an irreversible way. We notably find that the mode parity exchange is tightly related to a dramatic variation of the far field emission pattern, leading to the possibility to exploit these systems and techniques for future applications in optoelectronics.

14.
Phys Rev Lett ; 105(12): 123902, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20867641

RESUMO

We demonstrate the nonresonant magnetic interaction at optical frequencies between a photonic crystal microcavity and a metallized near-field microscopy probe. This interaction can be used to map and control the magnetic component of the microcavity modes. The metal coated tip acts as a microscopic conductive ring, which induces a magnetic response opposite to the inducing magnetic field. The resulting shift in resonance frequency can be used to measure the distribution of the magnetic field intensity of the photonic structure and fine-tune its optical response via the magnetic field components.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 2): 045603, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18999486

RESUMO

We report on the realization of a rewritable and local source inside a Si-based photonic crystal microcavity by infiltrating a solution of colloidal PbS quantum dots inside a single pore of the structure. We show that the resulting spontaneous emission from the source is both spatially and spectrally redistributed due to the mode structure of the photonic crystal cavity. The coupling of the quantum dot emission to the cavity mode is analyzed by mapping the luminescence signal of the infiltrated solution with a scanning near-field optical microscope at room temperature. Spectral characterization and the mode profile are in good agreement with a three-dimensional numerical calculation of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...