Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(6): e0399423, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38687075

RESUMO

Salmonella enterica serovar Kentucky ST198 is a major health threat due to its resistance to ciprofloxacin and several other drugs, including third-generation cephalosporins. Many drug-resistant genes have been identified in the Salmonella genomic island 1 variant K (SGI1-K). In this study, we investigated the antimicrobial resistance (AMR) profile and genotypic relatedness of two isolates of ciprofloxacin-resistant (CIPR) S. Kentucky ST198 from poultry in Northeastern Thailand. We successfully assembled the complete genomes of both isolates, namely SSSE-01 and SSSE-03, using hybrid de novo assembly of both short- and long-read sequence data. The complete genomes revealed their highly similar genomic structures and a novel variant of SGI1-K underlying multidrug-resistant (MDR) patterns, including the presence of blaTEM-1b, which confers resistance to beta-lactams, including cephalosporins and lnu(F) which confers resistance to lincomycin and other lincosamides. In addition, the chromosomal mutations in the quinolone resistance-determining region (QRDR) were found at positions 83 (Ser83Phe) and 87 (Asp87Asn) of GyrA and at positions 57 (Thr57Ser) and 80 (Ser80Ile) of ParC suggesting high resistance to ciprofloxacin. We also compared SSSE-01 and SSSE-03 with publicly available complete genome data and revealed significant variations in SGI1-K genetic structures and variable relationships to antibiotic resistance. In comparison to the other isolates, SGI1-K of SSSE-01 and SSSE-03 had a relatively large deletion in the backbone, spanning from S011 (traG∆) to S027 (resG), and the inversion of the IS26-S044∆-yidY segment. Their MDR region was characterized by the inversion of a large segment, including the mer operon and the relocation of IntI1 and several resistance genes downstream of the IS26-S044∆-yidY segment. These structural changes were likely mediated by the recombination of IS26. The findings broaden our understanding of the possible evolution pathway of SGI1-K in fostering drug resistance, which may provide opportunities to control these MDR strains.IMPORTANCEThe emergence of ciprofloxacin-resistant (CIPR) Salmonella Kentucky ST198 globally has raised significant concerns. This study focuses on two poultry isolates from Thailand, revealing a distinct Salmonella genomic island 1 variant K (SGI1-K) genetic structure. Remarkably, multiple antibiotic resistance genes (ARGs) were identified within the SGI1-K as well as other locations in the chromosome, but not in plasmids. Comparing the SGI1-K genetic structures among global and even within-country isolates unveiled substantial variations. Intriguingly, certain isolates lacked ARGs within the SGI1-K, while others had ARGs relocated outside. The presence of chromosomal extended-spectrum ß-lactamase (ESBL) genes and lincosamide resistance, lnu(F), gene, could potentially inform the choices of the treatment of CIPRS. Kentucky ST198 infections in humans. This study highlights the importance of understanding the diverse genetic structures of SGI1-K and emphasizes the role of animals and humans in the emergence of antimicrobial resistance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Ilhas Genômicas , Salmonella enterica , Ilhas Genômicas/genética , Farmacorresistência Bacteriana Múltipla/genética , Salmonella enterica/genética , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/classificação , Salmonella enterica/isolamento & purificação , Antibacterianos/farmacologia , Animais , Sorogrupo , Testes de Sensibilidade Microbiana , Ciprofloxacina/farmacologia , Tailândia , Aves Domésticas/microbiologia , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Proteínas de Bactérias/genética , Genoma Bacteriano
2.
Sci Rep ; 13(1): 21610, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062111

RESUMO

White Spot syndrome virus (WSSV) causes rapid shrimp mortality and production loss worldwide. This study demonstrates potential use of Lactobacillus johnsonii KD1 as an anti-WSSV agent for post larva shrimp cultivation and explores some potential mechanisms behind the anti-WSSV properties. Treatment of Penaeus vannamei shrimps with L. johnsonii KD1 prior to oral challenge with WSSV-infected tissues showed a significantly reduced mortality. In addition, WSSV copy numbers were not detected and shrimp immune genes were upregulated. Genomic analysis of L. johnsonii KD1 based on Illumina and Nanopore platforms revealed a 1.87 Mb chromosome and one 15.4 Kb plasmid. Only one antimicrobial resistance gene (ermB) in the chromosome was identified. Phylogenetic analysis comparing L. johnsonii KD1 to other L. johnsonii isolates revealed that L. johnsonii KD1 is closely related to L. johnsonii GHZ10a isolated from wild pigs. Interestingly, L. johnsonii KD1 contains isolate-specific genes such as genes involved in a type I restriction-modification system and CAZymes belonging to the GT8 family. Furthermore, genes coding for probiotic survival and potential antimicrobial/anti-viral metabolites such as a homolog of the bacteriocin helveticin-J were found. Protein-protein docking modelling suggests the helveticin-J homolog may be able to block VP28-PmRab7 interactions and interrupt WSSV infection.


Assuntos
Anti-Infecciosos , Lactobacillus johnsonii , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/genética , Filogenia , Genômica
3.
Sci Rep ; 13(1): 7080, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127697

RESUMO

S. 4,[5],12:i:-, a monophasic variant of S. enterica serovar Typhimurium, is an important multidrug resistant serovar. Strains of colistin-resistant S. 4,[5],12:i:- have been reported in several countries with patients occasionally had recent histories of travels to Southeast Asia. In the study herein, we investigated the genomes of S. 4,[5],12:i:- carrying mobile colistin resistance (mcr) gene in Thailand. Three isolates of mcr-3.1 carrying S. 4,[5],12:i:- in Thailand were sequenced by both Illumina and Oxford Nanopore platforms and we analyzed the sequences together with the whole genome sequences of other mcr-3 carrying S. 4,[5],12:i:- isolates available in the NCBI Pathogen Detection database. Three hundred sixty-nine core genome SNVs were identified from 27 isolates, compared to the S. Typhimurium LT2 reference genome. A maximum-likelihood phylogenetic tree was constructed and revealed that the samples could be divided into three clades, which correlated with the profiles of fljAB-hin deletions and plasmids. A couple of isolates from Denmark had the genetic profiles similar to Thai isolates, and were from the patients who had traveled to Thailand. Complete genome assembly of the three isolates revealed the insertion of a copy of IS26 at the same site near iroB, suggesting that the insertion was an initial step for the deletions of fljAB-hin regions, the hallmark of the 4,[5],12:i:- serovar. Six types of plasmid replicons were identified with the majority being IncA/C. The coexistence of mcr-3.1 and blaCTX-M-55 was found in both hybrid-assembled IncA/C plasmids but not in IncHI2 plasmid. This study revealed possible transmission links between colistin resistant S. 4,[5],12:i:- isolates found in Thailand and Denmark and confirmed the important role of plasmids in transferring multidrug resistance.


Assuntos
Colistina , Salmonella typhimurium , Humanos , Salmonella typhimurium/genética , Antibacterianos/farmacologia , Filogenia , Farmacorresistência Bacteriana , Plasmídeos , Testes de Sensibilidade Microbiana
4.
FEBS J ; 287(12): 2524-2543, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31788942

RESUMO

The α-1,3-glucanase from Paenibacillus glycanilyticus FH11 (Agl-FH1), a member of the glycoside hydrolase family 87 (GH87), hydrolyzes α-1,3-glucan with an endo-action. GH87 enzymes are known to degrade dental plaque produced by oral pathogenic Streptococcus species. In this study, the kinetic analyses revealed that this enzyme hydrolyzed α-1,3-tetraglucan into glucose and α-1,3-triglucan with ß-configuration at the reducing end by an inverting mechanism. The crystal structures of the catalytic domain (CatAgl-FH1) complexed with or without oligosaccharides at 1.4-2.5 or 1.6 Å resolutions, respectively, are also presented. The initial crystal structure of CatAgl-FH1 was determined by native single-wavelength anomalous diffraction. The catalytic domain was composed of two modules, a ß-sandwich fold module, and a right-handed ß-helix fold module. The structure of the ß-sandwich was similar to those of the carbohydrate-binding module family 35 members. The glycerol or nigerose enzyme complex structures demonstrated that this ß-sandwich fold module is a novel carbohydrate-binding module with the capabilities to bind saccharides and to promote the degradation of polysaccharides. The structures of the inactive mutant in complexes with oligosaccharide showed that at least eight subsites for glucose binding were located in the active cleft of the ß-helix fold and the architecture of the active cleft was suitable for the recognition and hydrolysis of α-1,3-glucan by the inverting mechanism. The structural similarity to GH28 and GH49 enzymes and the results of site-directed mutagenesis indicated that three Asp residues, Asp1045, Asp1068, and Asp1069, are the most likely candidates for the catalytic residues of Agl-FH1. DATABASE: Structural data are available in RCSB Protein Data Bank under the accession numbers 6K0M (CatAgl-FH1), 6K0N (WT/nigerose), 6K0P (D1045A/nigerose), 6K0Q (D1068A/nigerose), 6K0S (D1069A/ nigerose), 6K0U (D1068A/oligo), and 6K0V (D1069A/oligo). ENZYMES: Agl-FH1, α-1,3-glucanase (EC3.2.1.59) from Paenibacillus glycanilyticus FH11.


Assuntos
Biocatálise , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Paenibacillus/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Glucanos/química , Glucanos/metabolismo , Hidrólise , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/metabolismo , Conformação Proteica , Especificidade por Substrato
5.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 12): 770-773, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30511670

RESUMO

α-1,3-Glucanase hydrolyzes α-1,3-glucan, an insoluble linear α-1,3-linked homopolymer of glucose that is found in the extracellular polysaccharides produced by oral streptococci in dental plaque and in fungal cell walls. This enzyme could be of application in dental care and the development of fungal cell-wall lytic enzymes, but its three-dimensional structure has not been available to date. In this study, the recombinant catalytic domain of α-1,3-glucanase FH1 from Paenibacillus glycanilyticus FH11, which is classified into glycoside hydrolase family 87, was prepared using a Brevibacillus choshinensis expression system and purified in a soluble form. Crystals of the purified protein were produced by the sitting-drop vapor-diffusion method. Diffraction data were collected to a resolution of 1.6 Šusing synchrotron radiation. The crystals obtained belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = b = 132.6, c = 76.1 Å. The space group and unit-cell parameters suggest that there is one molecule in the asymmetric unit.


Assuntos
Brevibacillus/enzimologia , Domínio Catalítico/fisiologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Glicosídeo Hidrolases/biossíntese , Paenibacillus/enzimologia , Sequência de Aminoácidos , Brevibacillus/química , Brevibacillus/genética , Cristalografia por Raios X/métodos , Glucanos/biossíntese , Glucanos/genética , Glicosídeo Hidrolases/genética , Paenibacillus/química , Paenibacillus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...