Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(8): e0201861, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30086160

RESUMO

When reproduction in fungi takes place by sexual means, meiosis enables the formation of haploid spores from diploid precursor cells. Copper is required for completion of meiosis in Schizosaccharomyces pombe. During the meiotic program, genes encoding copper transporters exhibit distinct temporal expression profiles. In the case of the major facilitator copper transporter 1 (Mfc1), its maximal expression is induced during middle-phase meiosis and requires the presence of the Zn6Cys2 binuclear cluster-type transcription factor Mca1. In this study, we further characterize the mechanism by which Mca1 affects the copper-starvation-induced expression of mfc1+. Using a chromatin immunoprecipitation (ChIP) approach, results showed that a functional Mca1-TAP occupies the mfc1+ promoter irrespective of whether this gene is transcriptionally active. Under conditions of copper starvation, results showed that the presence of Mca1 promotes RNA polymerase II (Pol II) occupancy along the mfc1+ transcribed region. In contrast, Pol II did not significantly occupy the mfc1+ locus in meiotic cells that were incubated in the presence of copper. Further analysis by ChIP assays revealed that binding of Pol II to chromatin at the chromosomal locus of mfc1+ is exclusively detected during meiosis and absent in cells proliferating in mitosis. Protein function analysis of a series of internal mutants compared to the full-length Mca1 identified a minimal form of Mca1 consisting of its DNA-binding domain (residues 1 to 150) fused to the amino acids 299 to 600. This shorter form is sufficient to enhance Pol II occupancy at the mfc1+ locus under low copper conditions. Taken together, these results revealed novel characteristics of Mca1 and identified an internal region of Mca1 that is required to promote Pol II-dependent mfc1+ transcription during meiosis.


Assuntos
Caspases/metabolismo , Cobre/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sequência de Aminoácidos , Caspases/genética , Cobre/deficiência , Regulação Fúngica da Expressão Gênica/fisiologia , Loci Gênicos , Meiose/fisiologia , Proteínas de Membrana Transportadoras/genética , Mitose/fisiologia , Regiões Promotoras Genéticas , Ligação Proteica , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética
2.
PLoS One ; 11(3): e0151914, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986212

RESUMO

The Schizosaccharomyces pombe cuf2+ gene encodes a nuclear regulator that is required for timely activation and repression of several middle-phase genes during meiotic differentiation. In this study, we sought to gain insight into the mechanism by which Cuf2 regulates meiotic gene expression. Using a chromatin immunoprecipitation approach, we demonstrate that Cuf2 is specifically associated with promoters of both activated and repressed target genes, in a time-dependent manner. In case of the fzr1+ gene whose transcription is positively affected by Cuf2, promoter occupancy by Cuf2 results in a concomitant increased association of RNA polymerase II along its coding region. In marked contrast, association of RNA polymerase II with chromatin decreases when Cuf2 negatively regulates target gene expression such as wtf13+. Although Cuf2 operates through a transcriptional mechanism, it is unable to perform its function in the absence of the Mei4 transcription factor, which is a member of the conserved forkhead protein family. Using coimmunoprecipitation experiments, results showed that Cuf2 is a binding partner of Mei4. Bimolecular fluorescence complementation experiments brought further evidence that an association between Cuf2 and Mei4 occurs in the nucleus. Analysis of fzr1+ promoter regions revealed that two FLEX-like elements, which are bound by the transcription factor Mei4, are required for chromatin occupancy by Cuf2. Together, results reported here revealed that Cuf2 and Mei4 co-regulate the timely expression of middle-phase genes during meiosis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Meiose/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Fatores de Transcrição/fisiologia , Imunoprecipitação da Cromatina , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Fúngicos/genética , Genes Fúngicos/fisiologia , Meiose/fisiologia , Microscopia de Fluorescência , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , RNA Fúngico/genética , RNA Fúngico/fisiologia , Schizosaccharomyces/genética , Schizosaccharomyces/fisiologia , Fatores de Transcrição/genética
3.
J Biol Chem ; 289(14): 10168-81, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24569997

RESUMO

Meiosis requires copper to undertake its program in which haploid gametes are produced from diploid precursor cells. In Schizosaccharomyces pombe, copper is transported by three members of the copper transporter (Ctr) family, namely Ctr4, Ctr5, and Ctr6. Although central for sexual differentiation, very little is known about the expression profile, cellular localization, and physiological contribution of the Ctr proteins during meiosis. Analysis of gene expression of ctr4(+) and ctr5(+) revealed that they are primarily expressed in early meiosis under low copper conditions. In the case of ctr6(+), its expression is broader, being detected throughout the entire meiotic process with an increase during middle- and late-phase meiosis. Whereas the expression of ctr4(+) and ctr5(+) is exclusively dependent on the presence of Cuf1, ctr6(+) gene expression relies on two distinct regulators, Cuf1 and Mei4. Ctr4 and Ctr5 proteins co-localize at the plasma membrane shortly after meiotic induction, whereas Ctr6 is located on the membrane of vacuoles. After meiotic divisions, Ctr4 and Ctr5 disappear from the cell surface, whereas Ctr6 undergoes an intracellular re-location to co-localize with the forespore membrane. Under copper-limiting conditions, disruption of ctr4(+) and ctr6(+) results in altered SOD1 activity, whereas these mutant cells exhibit substantially decreased levels of CAO activity mostly in early- and middle-phase meiosis. Collectively, these results emphasize the notion that Ctr proteins exhibit differential expression, localization, and contribution in delivering copper to SOD1 and Cao1 proteins during meiosis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Membranas Intracelulares/metabolismo , Meiose/fisiologia , Schizosaccharomyces/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte de Cátions/genética , Transporte Proteico/fisiologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vacúolos/genética
4.
Eukaryot Cell ; 12(4): 575-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23397571

RESUMO

Mfc1 is a meiosis-specific protein that mediates copper transport during the meiotic program in Schizosaccharomyces pombe. Although the mfc1(+) gene is induced at the transcriptional level in response to copper deprivation, the molecular determinants that are required for its copper starvation-dependent induction are unknown. Promoter deletion and site-directed mutagenesis have allowed identification of a new cis-regulatory element in the promoter region of the mfc1(+) gene. This cis-acting regulatory sequence containing the sequence TCGGCG is responsible for transcriptional activation of mfc1(+) under low-copper conditions. The TCGGCG sequence contains a CGG triplet known to serve as a binding site for members of the Zn(2)Cys(6) binuclear cluster transcriptional regulator family. In agreement with this fact, one member of this group of regulators, denoted Mca1, was found to be required for maximum induction of mfc1(+) gene expression. Analysis of Mca1 cellular distribution during meiosis revealed that it colocalizes with both chromosomes and sister chromatids during early, middle, and late phases of the meiotic program. Cells lacking Mca1 exhibited a meiotic arrest at metaphase I under low-copper conditions. Binding studies revealed that the N-terminal 150-residue segment of Mca1 expressed as a fusion protein in Escherichia coli specifically interacts with the TCGGCG sequence of the mfc1(+) promoter. Taken together, these results identify the cis-regulatory TCGGCG sequence and the transcription factor Mca1 as critical components for activation of the meiotic copper transport mfc1(+) gene in response to copper starvation.


Assuntos
Sequência de Bases , Cobre/metabolismo , Regulação Fúngica da Expressão Gênica , Meiose/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Deleção de Sequência , Sequência de Aminoácidos , Sítios de Ligação , Cromossomos Fúngicos , Cobre/deficiência , Escherichia coli/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
5.
Commun Integr Biol ; 5(2): 118-21, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22808312

RESUMO

Meiosis is a specialized cell division process by which diploid germ line cells generate haploid gametes, which are required for sexual reproduction. During this process, several micronutrients are required, including copper ions. Despite important roles for copper-dependent proteins during meiosis, their mechanisms of action remain poorly understood. In a recently publication, we reported the discovery of Mfc1, the first example ever reported of a meiosis-specific copper transporter. Although Mfc1 did not exhibit any significant amino acid sequence similarities with members of the Ctr family of copper transporters, it harbored putative copper coordination motifs. Microarray data showed that mfc1(+) was the most highly induced of all meiotic genes detected under copper-limiting conditions. Analysis of Mfc1 localization during meiosis revealed that it localized at the forespore membrane during middle and late phases of the meiotic program. Interestingly, live-cell copper imaging using a copper-binding tracker revealed accumulation of copper ions into the forespore in wild-type cells. In contrast, mutant cells lacking Mfc1 displayed an intracellular distribution of copper ions that was dispersed throughout the ascospores without any marked preference for the forespore. We propose that Mfc1 is required to mobilize copper into the forespore, thereby providing copper to copper-requiring enzymes of the developing spores.

6.
PLoS One ; 7(4): e36338, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558440

RESUMO

BACKGROUND: Meiosis is the specialized form of the cell cycle by which diploid cells produce the haploid gametes required for sexual reproduction. Initiation and progression through meiosis requires that the expression of the meiotic genes is precisely controlled so as to provide the correct gene products at the correct times. During meiosis, four temporal gene clusters are either induced or repressed by a cascade of transcription factors. PRINCIPAL FINDINGS: In this report a novel copper-fist-type regulator, Cuf2, is shown to be expressed exclusively during meiosis. The expression profile of the cuf2(+) mRNA revealed that it was induced during middle-phase meiosis. Both cuf2(+) mRNA and protein levels are unregulated by copper addition or starvation. The transcription of cuf2(+) required the presence of a functional mei4(+) gene encoding a key transcription factor that activates the expression of numerous middle meiotic genes. Microscopic analyses of cells expressing a functional Cuf2-GFP protein revealed that Cuf2 co-localized with both homologous chromosomes and sister chromatids during the meiotic divisions. Cells lacking Cuf2 showed an elevated and sustained expression of several of the middle meiotic genes that persisted even during late meiosis. Moreover, cells carrying disrupted cuf2Δ/cuf2Δ alleles displayed an abnormal morphology of the forespore membranes and a dramatic reduction of spore viability. SIGNIFICANCE: Collectively, the results revealed that Cuf2 functions in the timely repression of the middle-phase genes during meiotic differentiation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Meiose , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Anáfase , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromossomos Fúngicos/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Espaço Intracelular/metabolismo , Metáfase , Dados de Sequência Molecular , Transporte Proteico , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
7.
J Biol Chem ; 286(39): 34356-72, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21828039

RESUMO

To gain insight in the molecular basis of copper homeostasis during meiosis, we have used DNA microarrays to analyze meiotic gene expression in the model yeast Schizosaccharomyces pombe. Profiling data identified a novel meiosis-specific gene, termed mfc1(+), that encodes a putative major facilitator superfamily-type transporter. Although Mfc1 does not exhibit any significant sequence homology with the copper permease Ctr4, it contains four putative copper-binding motifs that are typically found in members of the copper transporter family of copper transporters. Similarly to the ctr4(+) gene, the transcription of mfc1(+) was induced by low concentrations of copper. However, its temporal expression profile during meiosis was distinct to ctr4(+). Whereas Ctr4 was observed at the plasma membrane shortly after induction of meiosis, Mfc1 appeared later in precursor vesicles and, subsequently, at the forespore membrane of ascospores. Using the fluorescent copper-binding tracker Coppersensor-1 (CS1), labile cellular copper was primarily detected in the forespores in an mfc1(+)/mfc1(+) strain, whereas an mfc1Δ/mfc1Δ mutant exhibited an intracellular dispersed punctate distribution of labile copper ions. In addition, the copper amine oxidase Cao1, which localized primarily in the forespores of asci, was fully active in mfc1(+)/mfc1(+) cells, but its activity was drastically reduced in an mfc1Δ/mfc1Δ strain. Furthermore, our data showed that meiotic cells that express the mfc1(+) gene have a distinct developmental advantage over mfc1Δ/mfc1Δ mutant cells when copper is limiting. Taken together, the data reveal that Mfc1 serves to transport copper for accurate and timely meiotic differentiation under copper-limiting conditions.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Cobre/metabolismo , Meiose/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Motivos de Aminoácidos , Proteínas de Transporte de Cátions/genética , Cátions/metabolismo , Membrana Celular/genética , Transporte de Íons/fisiologia , Proteínas SLC31 , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
8.
PLoS One ; 5(8): e11964, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20694150

RESUMO

BACKGROUND: In Schizosaccharomyces pombe, copper uptake is carried out by a heteromeric complex formed by the Ctr4 and Ctr5 proteins. Copper-induced differential subcellular localization may play a critical role with respect to fine tuning the number of Ctr4 and Ctr5 molecules at the cell surface. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a bimolecular fluorescence complementation (BiFC) assay to analyze protein-protein interactions in vivo in S. pombe. The assay is based on the observation that N- and C-terminal subfragments of the Venus fluorescent protein can reconstitute a functional fluorophore only when they are brought into tight contact. Wild-type copies of the ctr4(+) and ctr5(+) genes were inserted downstream of and in-frame with the nonfluorescent C-terminal (VC) and N-terminal (VN) coding fragments of Venus, respectively. Co-expression of Ctr4-VC and Ctr5-VN fusion proteins allowed their detection at the plasma membrane of copper-limited cells. Similarly, cells co-expressing Ctr4-VN and Ctr4-VC in the presence of Ctr5-Myc(12) displayed a fluorescence signal at the plasma membrane. In contrast, Ctr5-VN and Ctr5-VC co-expressed in the presence of Ctr4-Flag(2) failed to be visualized at the plasma membrane, suggesting a requirement for a combination of two Ctr4 molecules with one Ctr5 molecule. We found that plasma membrane-located Ctr4-VC-Ctr5-VN fluorescent complexes were internalized when the cells were exposed to high levels of copper. The copper-induced internalization of Ctr4-VC-Ctr5-VN complexes was not dependent on de novo protein synthesis. When cells were transferred back from high to low copper levels, there was reappearance of the BiFC fluorescent signal at the plasma membrane. SIGNIFICANCE: These findings reveal a copper-dependent internalization and recycling of the heteromeric Ctr4-Ctr5 complex as a function of copper availability.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Bases , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Sobrevivência Celular , Microscopia de Fluorescência , Imagem Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Transporte Proteico , Proteínas SLC31 , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...