Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37507886

RESUMO

This study aimed to investigate the effect of an innovative ecofriendly process-instant controlled pressure drop technology, also known as "détente instantanée contrôlée" or DIC-coupled with Tripolium extraction (DIC-Tripolium), on the hesperidin recovery, and antioxidant and antidiabetic activities of orange byproduct extracts. A DIC pretreatment was applied to partially dried orange byproducts (~16% wet basis). A central composite rotatable design (CCRD), composed of 13 experimental trials (four factorial points, four-star points, and five repetitions for the central point), was followed by a Tripolium process consisting of successive intermittent extraction periods using ethanol/water solvent at 20 ± 1 °C, 5 kPa for 5 min and m/v ratio = 5 g/50 mL. The DIC pretreatment, coupled with the Tripolium process, increased the extractability of hesperidin (from 1.55- to 4.67-fold compared to untreated DIC orange byproducts). The radical scavenging activities of the extracts were also enhanced or preserved in different DIC-Tripolium extracts. The α-Amylase inhibition percentage varied between 55.6 ± 0.02 and 88.30 ± 0.01% according to DIC-Tripolium conditions. The multi-criteria optimized condition of DIC-Tripolium extraction, allowing for the maximization of the hesperidin content, radical scavenging activities, iron chelating activity, and α-amylase inhibition of extracts, corresponds to a DIC saturated steam pressure of 599.4 kPa and a DIC pretreatment time of 38 s.

2.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838846

RESUMO

The orange byproduct is a widely accessible and valuable source of functional phenolic compounds, particularly hesperidin. Hesperidin extraction remains a challenging phase in its valorization chain due to its low solubility and limited extractability in solvents. This work aims to examine the effect of conventional solvent extraction (CSE) compared to emerging and innovative extraction methods: accelerated solvent extraction (ASE) and ultrasound-assisted extraction (UAE) when applied with or without a pretreatment process of instant controlled pressure drop (DIC) to intensify extraction, antioxidant, and antidiabetic activities. The total phenols, flavonoids, hesperidin contents, radical scavenging activities, iron chelating activity, and in vitro α-amylase inhibition of the extracts were determined for CSE (80%, 70 °C), UAE (ethanol 80%, 70 °C, 200 W), and ASE (ethanol 60%, 100 °C, 100 bars) with or without DIC pretreatment (pressure = 0.4 MPa, total thermal time = 30 s). The hesperidin amounts obtained were 0.771 ± 0.008 g/100 g DM, 0.823 ± 0.054 g/100 g DM, and 1.368 ± 0.058 g/100 g DM, for CSE, UAE, and ASE, respectively. DIC pretreatment of orange byproducts increased hesperidin recovery by 67%, 25.6%, and 141% for DIC-CSE, DIC-UAE, and DIC-ASE, respectively. The DPPH and ABTS radical scavenging and iron chelating activities of extracts were also significantly enhanced, and the in vitro antidiabetic activity of extracts was preserved.


Assuntos
Citrus sinensis , Hesperidina , Antioxidantes/química , Fenóis/química , Solventes/química , Etanol/química , Extratos Vegetais/química , Quelantes de Ferro
3.
Foods ; 12(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36766049

RESUMO

Sinapine is a phenolic compound found in mustard (Brassica juncea) seed meal. It has numerous beneficial properties such as antitumor, neuroprotective, antioxidant, and hepatoprotective effects, making its extraction relevant. In this study, the extraction of sinapine was investigated using three methods: (i) from a mustard seed meal defatted by a supercritical CO2 (SC-CO2) pretreatment, (ii) by the implementation of high-voltage electrical discharges (HVEDs), (iii) and by the use of ultrasound. The use of SC-CO2 pretreatment resulted in a dual effect on the valorization of mustard seed meal, acting as a green solvent for oil recovery and increasing the yield of extracted sinapine by 24.4% compared to the control. The combination of ultrasound and SC-CO2 pretreatment further increased the yield of sinapine by 32%. The optimal conditions for ultrasound-assisted extraction, determined through a response surface methodology, are a temperature of 75 °C, 70% ethanol, and 100% ultrasound amplitude, resulting in a sinapine yield of 6.90 ± 0.03 mg/g dry matter. In contrast, the application of HVEDs in the extraction process was not optimized, as it led to the degradation of sinapine even at low-energy inputs.

4.
Antioxidants (Basel) ; 11(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35624677

RESUMO

Cherry tree branches (Prunus avium var burlat Rosaceae) are agricultural by-products that are often neglected, yet they are rich in phenolic compounds and highly appreciated for their numerous biological activities. Extracts of cherry tree branches were evaluated for their use in cosmetics, particularly for their antioxidant, anti-tyrosinase, and antimicrobial activities. Samples were obtained by accelerated solvent extraction (ASE) at different ethanol percentages and different temperatures. Fourteen phenolic compounds were identified in the extracts by mass spectrometry. Three major compounds were identified (catechin, genistin, and prunin) representing 84 wt% of the total phenolic compounds. Optimal operating conditions maximizing the content of phenolic compounds were determined using a one factor at a time (OFAT) approach (70% aqueous ethanol, 70 °C). The extract obtained under these conditions also showed the highest antioxidant and anti-tyrosinase activities, certainly due to a high catechin content. Although the antimicrobial activities of extracts are less versatile than those of synthetic molecules, they are nonetheless interesting. According to these results, the extracts of cherry tree branches could be used in cosmetics for their interesting properties.

5.
Foods ; 11(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563940

RESUMO

Chlorogenic acids are major phenolic constituents in many herbal medicines and exhibit various bioactivities that explain the growing interest in extracting chlorogenic acids from biomass. In this context, the present study aims to maximize 3-O-Caffeoylquinic acid (3-CQA) and 3,5-O-di-caffeoylquinic acid (3,5-diCQA) contents from forced witloof chicory roots and to analyze the extraction kinetic modelling. First, the solid-liquid ratio, ethanol concentration, extraction time and temperature were studied. The extraction conditions were optimized to maximize the extraction of these compounds. The maximum yields reached 5 ± 0.11 and 5.97 ± 0.30 mg/g dry matter (DM) for 3-O-Caffeoylquinic acid and 3,5-O-di-caffeoylquinic acid, respectively, in less than 6 min at 70 °C. Extraction with water as a solvent was assessed with the aim of proposing a second greener and less-expensive solvent. This extraction is very fast from 90 °C, with a maximum of 6.22 ± 0.18 mg/gDM of 3-O-Caffeoylquinic acid, and instantaneous for 3,5-O-di-caffeoylquinic acid with a maximum of 6.44 ± 0.59 mg/gDM. In the second step, response surface methodology was employed to optimize the ultrasound-assisted extraction of antioxidants. The higher antioxidant activities were found at temperatures from 40 °C and at percentages of ethanol in the range of 35-70%.

6.
Foods ; 11(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159579

RESUMO

The sustainable extraction of secondary metabolites from Brassica agro-industrial by-products often involves the use of high concentrations of ethanol, and/or high temperatures, which tends to decrease the efficiency of protein extraction (yield, profile, etc.). To understand the limits of the combination of these two extraction processes, aqueous ethanol extraction of secondary metabolites (e.g., phenolic compounds and glucosinolates) from Brassica carinata defatted meal was optimized using Response Surface Methodology. The validated models predicted that aqueous ethanol extraction of defatted Carinata meal, with a low aqueous EtOH concentration (22% EtOH) at moderate Te (50 °C), enables the efficient recovery of secondary metabolites (sinapine = 9.12 ± 0.05 mg/gDM, sinigrin = 86.54 ± 3.18 µmol/gDM) while maintaining good protein extractability (59.8 ± 2.1%) from successive alkaline extractions. The evaluation of functional properties of the resulting protein isolates revealed that aqueous extraction, under optimized conditions, improves foaming activity while preserving emulsion ability.

7.
Foods ; 11(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37430963

RESUMO

Forced chicory roots (FCR) are the main but also the least valued by-products of Belgian endive culture. However, they contain molecules of interest for industry such as caffeoylquinic acids (CQAs). This study aims to investigate accelerated solvent extraction (ASE) as a green technique to recover chlorogenic acid (5-CQA) and 3,5-dicaffeoylquinic acid (3,5-diCQA), the main CQAs. A D-optimal design was used to determine the influence of temperature and ethanol percentage on their extraction. Optimal extraction conditions were determined using response surface methodology (RSM) and allow the recovery of 4.95 ± 0.48 mg/gDM of 5-CQA at 107 °C, 46% of ethanol and 5.41 ± 0.79 mg/gDM of 3,5-diCQA at 95 °C, 57% of ethanol. The antioxidant activity of the extracts was also optimized by RSM. The highest antioxidant activity was achieved at 115 °C with 40% ethanol (more than 22mgTrolox/gDM). Finally, correlation between the antioxidant activity and the amount of CQAs was determined. FCR can be a great source of bioactive compounds with potential use as biobased antioxidant.

8.
Antioxidants (Basel) ; 10(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200871

RESUMO

Cannabis sativa L. is a controversial crop due to its high tetrahydrocannabinol content varieties; however, the hemp varieties get an increased interest. This paper describes (i) the main categories of phenolic compounds (flavonoids, stilbenoids and lignans) and terpenes (monoterpenes and sesquiterpenes) from C. sativa by-products and their biological activities and (ii) the main extraction techniques for their recovery. It includes not only common techniques such as conventional solvent extraction, and hydrodistillation, but also intensification and emerging techniques such as ultrasound-assisted extraction or supercritical CO2 extraction. The effect of the operating conditions on the yield and composition of these categories of phenolic compounds and terpenes was discussed. A thorough investigation of innovative extraction techniques is indeed crucial for the extraction of phenolic compounds and terpenes from cannabis toward a sustainable industrial valorization of the whole plant.

9.
Front Chem ; 9: 664602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055737

RESUMO

Sinapic acid (SinA) and corresponding esters are secondary metabolites abundantly found in plants of Brassica family. Belonging to the family of p-hydroxycinnamic acids, SinA and its esters analogues are present in different plant parts and involved in multiple biological processes in planta. Moreover, these metabolites are also found in relatively large quantities in agro-industrial wastes. Nowadays, these metabolites are increasingly drawing attention due to their bioactivities which include antioxidant, anti-microbial, anti-cancer and UV filtering activities. As a result, these metabolites find applications in pharmaceutical, cosmetic and food industries. In this context, this article reviews innate occurrence, biosynthesis, accessibility via chemical synthesis or direct extraction from agro-industrial wastes. Biological activities of SinA and its main corresponding esters will also be discussed.

10.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916212

RESUMO

The O-glycosylation of resveratrol increases both its solubility in water and its bioavailability while preventing its oxidation, allowing a more efficient use of this molecule as a bioactive ingredient in pharmaceutical and cosmetic applications. Resveratrol O-glycosides can be obtained by enzymatic reactions. Recent developments have made it possible to selectively obtain resveratrol α-glycosides from the ß-cyclodextrin-resveratrol complex in water with a yield of 35%. However, this yield is limited by the partial hydrolysis of the resveratrol glycosides produced during the reaction. In this study, we propose to intensify this enzymatic reaction by coupling the enzymatic reactor to a membrane process. Firstly, membrane screening was carried out at the laboratory scale and led to the choice of a GE polymeric membrane with a cut-off of 1 kDa. This membrane allowed the retention of 65% of the ß-cyclodextrin-resveratrol complex in the reaction medium and the transfer of 70% of the resveratrol α-O-glycosides in the permeate. In a second step, this membrane was used in an enzymatic membrane reactor and improved the yield of the enzymatic glycosylation up to 50%.

11.
Molecules ; 26(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401641

RESUMO

The aim of this paper is to study the effect of the pH on the extraction of sinapic acid and its derivatives from mustard seed meal. Solutions of acidic pH (pH 2), basic pH (pH 12) and distilled water (uncontrolled pH ~ 4.5) were tested at different percentages of ethanol. The maximum extraction yield for sinapic acid (13.22 µmol/g of dry matter (DM)) was obtained with a buffered aqueous solution at pH 12. For ethyl sinapate, the maximum extraction yield reached 9.81 µmol/g DM with 70% ethanol/buffered aqueous solution at pH 12. The maximum extraction yield of sinapine (15.73 µmol/g DM) was achieved with 70% ethanol/buffered aqueous solution at pH 2. The antioxidant activity of each extract was assessed by DPPH assay; the results indicated that the extracts obtained at pH 12 and at low ethanol percentages (<50%) exhibit a higher antioxidant activity than extracts obtained at acidic conditions. Maximum antioxidant activity was reached at pH 12 with buffer solution (11.37 mg of Trolox Equivalent/g DM), which confirms that sinapic acid-rich fractions exhibit a higher antioxidant activity. Thus, to obtain rich antioxidant extracts, it is suggested to promote the presence of sinapic acid in the extracts.


Assuntos
Antioxidantes , Ácidos Cumáricos , Mostardeira/química , Extratos Vegetais/química , Sementes/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Ácidos Cumáricos/química , Ácidos Cumáricos/isolamento & purificação , Concentração de Íons de Hidrogênio
12.
Molecules ; 25(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022970

RESUMO

Glucosinolates (GSLs) are secondary plant metabolites abundantly found in plant order Brassicales. GSLs are constituted by an S-ß-d-glucopyrano unit anomerically connected to O-sulfated (Z)-thiohydroximate moiety. The side-chain of the O-sulfate thiohydroximate moiety, which is derived from a different amino acid, contributes to the diversity of natural GSL, with more than 130 structures identified and validated to this day. Both the structural diversity of GSL and their biological implication in plants have been biochemically studied. Although chemical syntheses of GSL have been devised to give access to these secondary metabolites, direct extraction from biomass remains the conventional method to isolate natural GSL. While intact GSLs are biologically inactive, various products, including isothiocyanates, nitriles, epithionitriles, and cyanides obtained through their hydrolysis of GSLs, exhibit many different biological activities, among which several therapeutic benefits have been suggested. This article reviews natural occurrence, accessibility via chemical, synthetic biochemical pathways of GSL, and the current methodology of extraction, purification, and characterization. Structural information, including the most recent classification of GSL, and their stability and storage conditions will also be discussed. The biological perspective will also be explored to demonstrate the importance of these prominent metabolites.


Assuntos
Glucosinolatos/química , Glucosinolatos/isolamento & purificação , Domínio Catalítico , Glucosinolatos/biossíntese , Glucosinolatos/farmacologia , Glicosídeo Hidrolases/metabolismo , Hidrólise , Plantas/metabolismo , Soluções
13.
Environ Sci Pollut Res Int ; 27(12): 13417-13427, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32026362

RESUMO

Cisplatin is an effective chemotherapeutic agent that has pronounced adverse effects. Using flavonoids is currently eliciting considerable interest. During extraction and conditioning, they usually undergo several physical treatments such as heat treatment, although it is not known whether thermal treatment might influence the pharmacological effects of flavonoids such as luteolin-7-O-glucoside (L7G). This study was undertaken to explore the protective role of native and heated L7G against DNA damage and oxidative stress induced by cisplatin. Balb/c mice were administered L7G before a single intraperitoneal injection of cisplatin (10 mg/kg). Animals were sacrificed 24 h after treatment with drugs. The geno-protective role of native and heated L7G was evaluated by comet assay. In addition to monitoring the activities of antioxidant enzymes, levels of malondialdehyde and reduced glutathione were assessed in the liver, kidney, brain, and spleen tissues. The results of the present study demonstrate that both heated and native L7G, at a dose of 40 mg/kg b.w, were able to reduce the genotoxicity of cisplatin. They attenuate the oxidative stress (malondialdehyde, catalase, GPx, SOD, and GSH) and tissue damage (creatinine, IFNγ). Heat treatment did not alter the antigenotoxic effect observed for native L7G and showed similar effects to those of native L7G for all of the evaluated parameters. Our study reveals that L7G attenuates the side effects of anticancer drug and heat treatment did not alter his antigenotoxic and antioxidant the potential.


Assuntos
Antineoplásicos/farmacologia , Cisplatino , Animais , Antioxidantes , Dano ao DNA , Flavonas , Glucosídeos , Glutationa , Temperatura Alta , Rim , Camundongos , Estresse Oxidativo/efeitos dos fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-30553133

RESUMO

This paper describes an original analytical methodology for a simultaneous measurement of the protein conversion rate, the mean molar weight of peptide and the degree of hydrolysis in the course of proteolysis by Size-Exclusion High-Performance Liquid Chromatography. Peak area of dead volume eluents reflects the non-converted protein. The protein conversion rate is thus determined by comparing the area at a given time to the initial area. The peptide signal allows determining the peptide molar weight distribution and degree of hydrolysis of hydrolysates. As a first step, the approach was tested on the hydrolysis of bovine serum albumin, lysozyme and rapeseed albumin by Alcalase 2.4L. Values of degree of hydrolysis were also determined by TNBS and pH-stat methods. Most of the hydrolysate obtained showed relative differences < 20% with the reference methods. The method was also adapted to fit the TNBS assay. 39 experimental validation tests were analyzed by size-exclusion chromatography, TNBS and pH stat methods. 90% of the validation data show non-significant differences between the degree of hydrolysis predicted and the degree of hydrolysis measured by TNBS method. Hence, the proposed methodology can be efficient to study the process of enzymatic proteolysis while minimizing time and quantity of sample assay required.


Assuntos
Hidrolisados de Proteína , Proteínas , Proteólise , Animais , Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Hidrólise , Modelos Lineares , Peso Molecular , Hidrolisados de Proteína/análise , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Proteínas/análise , Proteínas/química , Proteínas/metabolismo , Reprodutibilidade dos Testes
15.
Environ Sci Pollut Res Int ; 25(36): 36545-36554, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30374718

RESUMO

Among the flavonoïds, luteolin is a flavone that has been identified in many plants. It is known for its apoptotic potential with damage to DNA and cell cycle blockage. Many studies have shown that luteolin has anti-oxidant, anti-inflammatory, and anti-cancer activities. However, it is known that heat treatment (boiling, cooking, and treating with microwaves …) can influence the structure of flavonoïds, which often leads to changes in their activities. The present study was conducted to study the effect of heated luteolin on anti-tumor activity of glioblastoma cells U87. Glioblastoma cell viability was evaluated by MTT assay. Adhesion assay was performed on different protein matrices (collagen type 1, vitronectin, fibronectin, and poly-L-lysine); migration assay was determined by modified Boyden chambers and videomicroscopy, and finally, angiogenesis was tested in vitro by capillary network formation on Matrigel™. The results obtained show that the thermal treatment significantly reduces its cytotoxic activity and ability to inhibit cell adhesion to different protein matrices. It was also found that the heat processed significantly reduced the ability of luteolin to inhibit cell migration, cell invasion, and endothelial cell angiogenesis (HMEC-1). This suggests that heat treated luteolin has a lower anti-tumor potential than native luteolin. Graphical abstract ᅟ.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Luteolina/química , Luteolina/farmacologia , Antineoplásicos/química , Neoplasias Encefálicas/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/patologia , Temperatura Alta , Humanos , Microscopia de Vídeo , Neovascularização Patológica/tratamento farmacológico
16.
Int Immunopharmacol ; 61: 317-324, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29913426

RESUMO

Plants and natural molecules are generally consumed not in raw state but after different processing conditions (heating, mechanical agitation or cooking). The understanding of the chemistry and biological outcome of thermal treatment is still scarce. In the current study, Eriodictyol, a natural flavanone, has undergone heat treatment, generating hence three different products ((3-(3,4-dihydroxyphenyl)-3-hydroxypropanoic acid, (3-(3,4-dihydroxyphenyl) propanal) and an unidentified component). The consequences of aforementioned treatment on the immunomodulatory behavior of resulted molecules were evaluated. The amount of nitric oxide production and the lysosomal enzyme activity were determined in vitro on mouse peritoneal macrophages. The kinetic of cellular antioxidant activity in splenocytes and macrophages was measured. The present investigation demonstrates that heat-processed eriodictyol significantly enhanced the proliferation of lymphocytes B and T compared to native eriodictyol. Indeed, this compound showed an important improvement on cytotoxic T lymphocyte (CTL) and natural killer (NK) activities. In addition, the production of nitric oxide (NO) and suppression of phagocytic activity of activated macrophages have been increasingly important after thermal processing. Furthermore, it was also revealed that heat-treated Erio in comparison with the native (non heat-treated) molecule has a highest cellular anti-oxidant activity in splenocytes and macrophages cells. These findings highlight the importance of heat-process as feasible and effective strategy to improve the immunomodulatory and the antioxidant efficiency of an known flavanone Eriodictyol.


Assuntos
Antioxidantes/uso terapêutico , Linfócitos B/efeitos dos fármacos , Produtos Biológicos/uso terapêutico , Flavanonas/uso terapêutico , Temperatura Alta/uso terapêutico , Macrófagos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Antioxidantes/química , Linfócitos B/imunologia , Produtos Biológicos/química , Proliferação de Células , Células Cultivadas , Citotoxicidade Imunológica , Flavanonas/química , Imunomodulação , Ativação Linfocitária , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Linfócitos T/imunologia
17.
Biomed Pharmacother ; 97: 1417-1423, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29156531

RESUMO

A major problem with cancer chemotherapy is its severe toxic effects on non-target tissues. Assessment of natural products for their protective effect against anticancer drugs induced toxicity is gaining importance in cancer biology. The aim of the present study was to evaluate the effect of native and thermal treated naringin on the protective effect against mitomycin C (MMC) induced genotoxicity. The genotoxicity in liver kidney and brain cells isolated from Balb/C mice were evaluated by performing the comet assay. Antioxidant and lipid peroxidation assays were carried out to understand the protective effects of these compounds. The comet assay showed that heated and native naringin were not genotoxic at the tested dose (40 mg/kg b.w) on liver, kidney and brain cells. A significant decrease in DNA damages was observed, at the tested doses (20 mg/kg b.w and 40 mg/kg b.w) suggesting a protective role of these molecules against the genotoxicity induced by mitomycin C on liver, kidney and brain cells. Moreover, administration of MMC (6 mg/kg b.w.) altered the activities of glutathione peroxidase and superoxide dismutase accompanied by a significant increase of lipid peroxidation. Pretreatment of mouse with heated and native naringin before MMC administration significantly raised the glutathione peroxidase and superoxide dismutase activities followed by a reduced MMC-induced lipid peroxidation. Our study demonstrated that heat treatment of naringin preserve activities of native naringin. The genoprotective properties of heated and native naringin against MMC could be attributed to its antioxidant activities and its inhibitory effect on lipid peroxidation.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Antimutagênicos/farmacologia , Flavanonas/farmacologia , Mitomicina/toxicidade , Animais , Antimutagênicos/administração & dosagem , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Flavanonas/administração & dosagem , Glutationa Peroxidase/metabolismo , Temperatura Alta , Rim/efeitos dos fármacos , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...