Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2447, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503752

RESUMO

Long-read sequencing offers long contiguous DNA fragments, facilitating diploid genome assembly and structural variant (SV) detection. Efficient and robust algorithms for SV identification are crucial with increasing data availability. Alignment-based methods, favored for their computational efficiency and lower coverage requirements, are prominent. Alternative approaches, relying solely on available reads for de novo genome assembly and employing assembly-based tools for SV detection via comparison to a reference genome, demand significantly more computational resources. However, the lack of comprehensive benchmarking constrains our comprehension and hampers further algorithm development. Here we systematically compare 14 read alignment-based SV calling methods (including 4 deep learning-based methods and 1 hybrid method), and 4 assembly-based SV calling methods, alongside 4 upstream aligners and 7 assemblers. Assembly-based tools excel in detecting large SVs, especially insertions, and exhibit robustness to evaluation parameter changes and coverage fluctuations. Conversely, alignment-based tools demonstrate superior genotyping accuracy at low sequencing coverage (5-10×) and excel in detecting complex SVs, like translocations, inversions, and duplications. Our evaluation provides performance insights, highlighting the absence of a universally superior tool. We furnish guidelines across 31 criteria combinations, aiding users in selecting the most suitable tools for diverse scenarios and offering directions for further method development.


Assuntos
Algoritmos , Genoma Humano , Humanos , Análise de Sequência de DNA/métodos , Diploide , Benchmarking , Sequenciamento de Nucleotídeos em Larga Escala
2.
Sci Rep ; 11(1): 15269, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315992

RESUMO

Autism is a spectrum disorder with wide variation in type and severity of symptoms. Understanding gene-phenotype associations is vital to unravel the disease mechanisms and advance its diagnosis and treatment. To date, several databases have stored a large portion of gene-phenotype associations which are mainly obtained from genetic experiments. However, a large proportion of gene-phenotype associations are still buried in the autism-related literature and there are limited resources to investigate autism-associated gene-phenotype associations. Given the abundance of the autism-related literature, we were thus motivated to develop Autism_genepheno, a text mining pipeline to identify sentence-level mentions of autism-associated genes and phenotypes in literature through natural language processing methods. We have generated a comprehensive database of gene-phenotype associations in the last five years' autism-related literature that can be easily updated as new literature becomes available. We have evaluated our pipeline through several different approaches, and we are able to rank and select top autism-associated genes through their unique and wide spectrum of phenotypic profiles, which could provide a unique resource for the diagnosis and treatment of autism. The data resources and the Autism_genpheno pipeline are available at: https://github.com/maiziezhoulab/Autism_genepheno .


Assuntos
Transtorno Autístico/genética , Mineração de Dados/métodos , Genótipo , Fenótipo , Bases de Dados Genéticas , Ontologia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...