Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 240(4): 1381-1389, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37724752

RESUMO

Gene duplication is a powerful source of biological innovation giving rise to paralogous genes that undergo diverse fates. Redundancy between paralogous genes is an intriguing outcome of duplicate gene evolution, and its maintenance over evolutionary time has long been considered a paradox. Redundancy can also be dubbed 'a geneticist's nightmare': It hinders the predictability of genome editing outcomes and limits our ability to link genotypes to phenotypes. Genetic studies in yeast and plants have suggested that the ability of ancient redundant duplicates to compensate for dosage perturbations resulting from a loss of function depends on the reprogramming of gene expression, a phenomenon known as active compensation. Starting from considerations on the stoichiometric constraints that drive the evolutionary stability of redundancy, this review aims to provide insights into the mechanisms of active compensation between duplicates that could be targeted for breaking paralog dependencies - the next frontier in plant functional studies.


Assuntos
Duplicação Gênica , Saccharomyces cerevisiae , Genótipo , Fenótipo , Saccharomyces cerevisiae/genética , Evolução Molecular , Genes Duplicados , Modelos Genéticos
2.
Elife ; 112022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36052993

RESUMO

In smallholder farming systems, traditional farmer varieties of neglected and underutilized species (NUS) support the livelihoods of millions of growers and consumers. NUS combine cultural and agronomic value with local adaptation, and transdisciplinary methods are needed to fully evaluate their breeding potential. Here, we assembled and characterized the genetic diversity of a representative collection of 366 Ethiopian teff (Eragrostis tef) farmer varieties and breeding materials, describing their phylogenetic relations and local adaptation on the Ethiopian landscape. We phenotyped the collection for its agronomic performance, involving local teff farmers in a participatory variety evaluation. Our analyses revealed environmental patterns of teff genetic diversity and allowed us to identify 10 genetic clusters associated with climate variation and with uneven spatial distribution. A genome-wide association study was used to identify loci and candidate genes related to phenology, yield, local adaptation, and farmers' appreciation. The estimated teff genomic offset under climate change scenarios highlighted an area around lake Tana where teff cropping may be most vulnerable to climate change. Our results show that transdisciplinary approaches may efficiently propel untapped NUS farmer varieties into modern breeding to foster more resilient and sustainable cropping systems.


Small farms support the livelihoods of about two billion people worldwide. Smallholder farmers often rely on local varieties of crops and use less irrigation and fertilizer than large producers. But smallholdings can be vulnerable to weather events and climate change. Data-driven research approaches may help to identify the needs of farmers, taking into account traditional knowledge and cultural practices to enhance the sustainability of certain crops. Teff is a cereal crop that plays a critical role in the culture and diets of Ethiopian communities. It is also a super food appreciated on international markets for its nutritional value. Rural smallholder farmers in Ethiopia rely on the crop for subsistence and income and make up the bulk of the country's agricultural system. Many grow local varieties with tremendous genetic diversity. Scientists, in collaboration with farmers, could tap that diversity to produce more productive or climate-resilient types of teff, both for national and international markets. Woldeyohannes, Iohannes et al. produced the first large-scale genetic, agronomic and climatic study of traditional teff varieties. In the experiments, Woldeyohannes and Iohannes et al. sequenced the genomes of 366 Ethiopian teff varieties and evaluated their agronomic value in common gardens. The team collaborated with 35 local farmers to understand their preference of varieties and traits. They then conducted a genome-wide association study to assess the crops' productivity and their adaptations to local growing conditions and farmer preferences. Genetic changes that speed up teff maturation and flowering time could meet small farmers' needs to secure teff harvest. Woldeyohannes, Iohannes et al. also identified a region in Ethiopia, where local teff varieties may struggle to adapt to climate change. Genetic modifications may help the crop to adapt to frequent droughts that may be a common characteristic of future climates. The experiments reveal the importance of incorporating traditional knowledge from smallholder farmers into data-driven crop improvement efforts considering genetics and climate science. This multidisciplinary approach may help to improve food security and protect local genetic diversity on small farms. It may also help to ensure that agricultural advances fairly and equitably benefit small farmers.


Assuntos
Eragrostis , Fazendeiros , Estudo de Associação Genômica Ampla , Humanos , Filogenia , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...