Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BioTechnologia (Pozn) ; 104(3): 263-273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37850114

RESUMO

Chickpea is an important food legume cultivated in semiarid regions, where water scarcity and nutrient deficiencies negatively affect crop production. This study aimed to investigate the effect of zinc and silicon from different sources, including bulk and nanostructures, on various biochemical traits of chickpea plants grown under field conditions in Maragheh, Northwest Iran. The main experimental factor consisted of three soil moisture levels: irrigation to 90% of field capacity (FC), 60% FC, and 30% FC. The subplots were assigned for foliar application of different fertilizers: control (distilled water), zinc sulfate (ZnSO), silicon dioxide nanoparticles (SiO2 NPs), ZnSO + SiO2 NPs, and zinc-containing mesoporous silica nanoparticles (MSNPs -Zn). The results showed that although decreased soil moisture had a negative impact on several biochemical processes, foliar application of Zn and Si in both conventional bulk and nanostructure significantly affected plant antioxidant system, plasma membrane integrity, and the concentrations of photosynthetic pigments and compatible solutes. However, the most inducing effects on catalase, ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase, and anthocyanin were observed with the foliar spray of MSNPs-Zn and ZnSO + SiO2 under 60% FC. Moreover, foliar spray of MSNPs-Zn alleviated the negative effects of water deficit stress on photosynthetic pigments (chlorophyll a /b and carotenoid content). Water stress significantly induced the accumulation of free proline in the leaves. Overall, the results indicated that foliar spray of MSNPs -Zn, especially under 60% FC, improved the plant's defense system, scavenged reactive oxygen species, and enhanced the accumulation and stability of pigments, thereby mitigating the effects of drought stress.

2.
Materials (Basel) ; 14(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478089

RESUMO

The paper presents the possibility of detecting low H2S concentrations using CuWO4. The applicative challenge was to obtain sensitivity, selectivity, short response time, and full recovery at a low operating temperature under in-field atmosphere, which means variable relative humidity (%RH). Three different chemical synthesis routes were used for obtaining the samples labeled as: CuW1, CuW2, and CuW3. The materials have been fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). While CuWO4 is the common main phase with triclinic symmetry, different native layers of CuO and Cu(OH)2 have been identified on top of the surfaces. The differences induced into their structural, morphological, and surface chemistry revealed different degrees of surface hydroxylation. Knowing the poisonous effect of H2S, the sensing properties evaluation allowed the CuW2 selection based on its specific surface recovery upon gas exposure. Simultaneous electrical resistance and work function measurements confirmed the weak influence of moisture over the sensing properties of CuW2, due to the pronounced Cu(OH)2 native surface layer, as shown by XPS investigations. Moreover, the experimental results obtained at 150 °C highlight the linear sensor signal for CuW2 in the range of 1 to 10 ppm H2S concentrations and a pronounced selectivity towards CO, CH4, NH3, SO2, and NO2. Therefore, the applicative potential deserves to be noted. The study has been completed by a theoretical approach aiming to link the experimental findings with the CuW2 intrinsic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...