Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Psychiatry Res Neuroimaging ; 340: 111806, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508025

RESUMO

Autism spectrum disorder (ASD) and schizophrenia (SZ) are neuropsychiatric disorders that overlap in symptoms associated with social-cognitive impairment. Alterations of the cingulate cortex, subcortical, medial-temporal, and orbitofrontal structures are frequently reported in both disorders. In this study, we examined white-matter connectivity between these structures in adults with ASD and SZ patients compared with their respective neurotypical controls and indirectly with each other, using probabilistic and local DTI tractography. This exploratory study utilized publicly available neuroimaging databases, of adults with ASD (ABIDE II; n = 28) and SZ (COBRE; n = 38), age-gender matched neurotypicals (NT) and associated phenotypic data. Tractography was performed using Freesurfer and MRtrix software, and diffusion metrics of white-matter tracts between cingulate-, orbitofrontal- cortices, subcortical structures, parahippocampal, entorhinal cortex were assessed. In ASD, atypical diffusivity parameters were found in the isthmus cingulate and parahippocampal connectivity to subcortical and rostral-anterior cingulate, which were also associated with IQ and social skills (SRS). In contrast, atypical diffusivity parameters were observed between the medial-orbitofrontal cortex and subcortical structures in SZ, and were associated with executive function (i.e., IQ, processing speed) and emotional regulation. Overall, the results suggest that defects in the isthmus cingulate, medial-orbitofrontal, and striato-limbic white matter connectivity may help unravel the neural underpinnings of executive and social-emotional dysfunction at the core of neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Esquizofrenia , Substância Branca , Adulto , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Giro do Cíngulo , Neuroimagem
2.
Front Oncol ; 13: 1146031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234975

RESUMO

Introduction: The intrinsic autofluorescence of biological tissues interferes with the detection of fluorophores administered for fluorescence guidance, an emerging auxiliary technique in oncological surgery. Yet, autofluorescence of the human brain and its neoplasia is sparsely examined. This study aims to assess autofluorescence of the brain and its neoplasia on a microscopic level by stimulated Raman histology (SRH) combined with two-photon fluorescence. Methods: With this experimentally established label-free microscopy technique unprocessed tissue can be imaged and analyzed within minutes and the process is easily incorporated in the surgical workflow. In a prospective observational study, we analyzed 397 SRH and corresponding autofluorescence images of 162 samples from 81 consecutive patients that underwent brain tumor surgery. Small tissue samples were squashed on a slide for imaging. SRH and fluorescence images were acquired with a dual wavelength laser (790 nm and 1020 nm) for excitation. In these images tumor and non-tumor regions were identified by a convolutional neural network that reliably differentiates between tumor, healthy brain tissue and low quality SRH images. The identified areas were used to define regions.of- interests (ROIs) and the mean fluorescence intensity was measured. Results: In healthy brain tissue, we found an increased mean autofluorescence signal in the gray (11.86, SD 2.61, n=29) compared to the white matter (5.99, SD 5.14, n=11, p<0.01) and in the cerebrum (11.83, SD 3.29, n=33) versus the cerebellum (2.82, SD 0.93, n=7, p<0.001), respectively. The signal of carcinoma metastases, meningiomas, gliomas and pituitary adenomas was significantly lower (each p<0.05) compared to the autofluorescence in the cerebrum and dura, and significantly higher (each p<0.05) compared to the cerebellum. Melanoma metastases were found to have a higher fluorescent signal (p<0.01) compared to cerebrum and cerebellum. Discussion: In conclusion we found that autofluorescence in the brain varies depending on the tissue type and localization and differs significantly among various brain tumors. This needs to be considered for interpreting photon signal during fluorescence-guided brain tumor surgery.

3.
Hum Brain Mapp ; 44(2): 801-812, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36222055

RESUMO

Whether brain matter volume is correlated with cognitive functioning and higher intelligence is controversial. We explored this relationship by analysis of data collected on 193 healthy young and older adults through the "Leipzig Study for Mind-Body-Emotion Interactions" (LEMON) study. Our analysis involved four cognitive measures: fluid intelligence, crystallized intelligence, cognitive flexibility, and working memory. Brain subregion volumes were determined by magnetic resonance imaging. We normalized each subregion volume to the estimated total intracranial volume and conducted training simulations to compare the predictive power of normalized volumes of large regions of the brain (i.e., gray matter, cortical white matter, and cerebrospinal fluid), normalized subcortical volumes, and combined normalized volumes of large brain regions and normalized subcortical volumes. Statistical tests showed significant differences in the performance accuracy and feature importance of the subregion volumes in predicting cognitive skills for young and older adults. Random forest feature selection analysis showed that cortical white matter was the key feature in predicting fluid intelligence in both young and older adults. In young adults, crystallized intelligence was best predicted by caudate nucleus, thalamus, pallidum, and nucleus accumbens volumes, whereas putamen, amygdala, nucleus accumbens, and hippocampus volumes were selected for older adults. Cognitive flexibility was best predicted by the caudate, nucleus accumbens, and hippocampus in young adults and caudate and amygdala in older adults. Finally, working memory was best predicted by the putamen, pallidum, and nucleus accumbens in the younger group, whereas amygdala and hippocampus volumes were predictive in the older group. Thus, machine learning predictive models demonstrated an age-dependent association between subcortical volumes and cognitive measures. These approaches may be useful in predicting the likelihood of age-related cognitive decline and in testing of approaches for targeted improvement of cognitive functioning in older adults.


Assuntos
Encéfalo , Substância Cinzenta , Adulto Jovem , Humanos , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Núcleo Accumbens/patologia , Núcleo Caudado , Imageamento por Ressonância Magnética/métodos , Cognição
4.
Acta Neuropathol Commun ; 10(1): 109, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933416

RESUMO

Determining the presence of tumor in biopsies and the decision-making during resections is often dependent on intraoperative rapid frozen-section histopathology. Recently, stimulated Raman scattering microscopy has been introduced to rapidly generate digital hematoxylin-and-eosin-stained-like images (stimulated Raman histology) for intraoperative analysis. To enable intraoperative prediction of tumor presence, we aimed to develop a new deep residual convolutional neural network in an automated pipeline and tested its validity. In a monocentric prospective clinical study with 94 patients undergoing biopsy, brain or spinal tumor resection, Stimulated Raman histology images of intraoperative tissue samples were obtained using a fiber-laser-based stimulated Raman scattering microscope. A residual network was established and trained in ResNetV50 to predict three classes for each image: (1) tumor, (2) non-tumor, and (3) low-quality. The residual network was validated on images obtained in three small random areas within the tissue samples and were blindly independently reviewed by a neuropathologist as ground truth. 402 images derived from 132 tissue samples were analyzed representing the entire spectrum of neurooncological surgery. The automated workflow took in a mean of 240 s per case, and the residual network correctly classified tumor (305/326), non-tumorous tissue (49/67), and low-quality (6/9) images with an inter-rater agreement of 89.6% (κ = 0.671). An excellent internal consistency was found among the random areas with 90.2% (Cα = 0.942) accuracy. In conclusion, the novel stimulated Raman histology-based residual network can reliably detect the microscopic presence of tumor and differentiate from non-tumorous brain tissue in resection and biopsy samples within 4 min and may pave a promising way for an alternative rapid intraoperative histopathological decision-making tool.


Assuntos
Neoplasias Encefálicas , Microscopia Óptica não Linear , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Progressão da Doença , Humanos , Redes Neurais de Computação , Procedimentos Neurocirúrgicos , Estudos Prospectivos , Compostos Radiofarmacêuticos
5.
Brain Sci ; 12(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35447970

RESUMO

Autism spectrum disorder (ASD) and schizophrenia (SZ) are neuropsychiatric disorders that overlap in symptoms associated with social-cognitive impairment. Subcortical structures play a significant role in cognitive and social-emotional behaviors and their abnormalities are associated with neuropsychiatric conditions. This exploratory study utilized ABIDE II/COBRE MRI and corresponding phenotypic datasets to compare subcortical volumes of adults with ASD (n = 29), SZ (n = 51) and age and gender matched neurotypicals (NT). We examined the association between subcortical volumes and select behavioral measures to determine whether core symptomatology of disorders could be explained by subcortical association patterns. We observed volume differences in ASD (viz., left pallidum, left thalamus, left accumbens, right amygdala) but not in SZ compared to their respective NT controls, reflecting morphometric changes specific to one of the disorder groups. However, left hippocampus and amygdala volumes were implicated in both disorders. A disorder-specific negative correlation (r = -0.39, p = 0.038) was found between left-amygdala and scores on the Social Responsiveness Scale (SRS) Social-Cognition in ASD, and a positive association (r = 0.29, p = 0.039) between full scale IQ (FIQ) and right caudate in SZ. Significant correlations between behavior measures and subcortical volumes were observed in NT groups (ASD-NT range; r = -0.53 to -0.52, p = 0.002 to 0.004, SZ-NT range; r = -0.41 to -0.32, p = 0.007 to 0.021) that were non-significant in the disorder groups. The overlap of subcortical volumes implicated in ASD and SZ may reflect common neurological mechanisms. Furthermore, the difference in correlation patterns between disorder and NT groups may suggest dysfunctional connectivity with cascading effects unique to each disorder and a potential role for IQ in mediating behavior and brain circuits.

6.
Front Med (Lausanne) ; 6: 185, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632973

RESUMO

There has been an exponential growth in the application of AI in health and in pathology. This is resulting in the innovation of deep learning technologies that are specifically aimed at cellular imaging and practical applications that could transform diagnostic pathology. This paper reviews the different approaches to deep learning in pathology, the public grand challenges that have driven this innovation and a range of emerging applications in pathology. The translation of AI into clinical practice will require applications to be embedded seamlessly within digital pathology workflows, driving an integrated approach to diagnostics and providing pathologists with new tools that accelerate workflow and improve diagnostic consistency and reduce errors. The clearance of digital pathology for primary diagnosis in the US by some manufacturers provides the platform on which to deliver practical AI. AI and computational pathology will continue to mature as researchers, clinicians, industry, regulatory organizations and patient advocacy groups work together to innovate and deliver new technologies to health care providers: technologies which are better, faster, cheaper, more precise, and safe.

7.
Front Neurosci ; 11: 398, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744195

RESUMO

Purpose: The purpose of this study is classifying multiple sclerosis (MS) patients in the four clinical forms as defined by the McDonald criteria using machine learning algorithms trained on clinical data combined with lesion loads and magnetic resonance metabolic features. Materials and Methods: Eighty-seven MS patients [12 Clinically Isolated Syndrome (CIS), 30 Relapse Remitting (RR), 17 Primary Progressive (PP), and 28 Secondary Progressive (SP)] and 18 healthy controls were included in this study. Longitudinal data available for each MS patient included clinical (e.g., age, disease duration, Expanded Disability Status Scale), conventional magnetic resonance imaging and spectroscopic imaging. We extract N-acetyl-aspartate (NAA), Choline (Cho), and Creatine (Cre) concentrations, and we compute three features for each spectroscopic grid by averaging metabolite ratios (NAA/Cho, NAA/Cre, Cho/Cre) over good quality voxels. We built linear mixed-effects models to test for statistically significant differences between MS forms. We test nine binary classification tasks on clinical data, lesion loads, and metabolic features, using a leave-one-patient-out cross-validation method based on 100 random patient-based bootstrap selections. We compute F1-scores and BAR values after tuning Linear Discriminant Analysis (LDA), Support Vector Machines with gaussian kernel (SVM-rbf), and Random Forests. Results: Statistically significant differences were found between the disease starting points of each MS form using four different response variables: Lesion Load, NAA/Cre, NAA/Cho, and Cho/Cre ratios. Training SVM-rbf on clinical and lesion loads yields F1-scores of 71-72% for CIS vs. RR and CIS vs. RR+SP, respectively. For RR vs. PP we obtained good classification results (maximum F1-score of 85%) after training LDA on clinical and metabolic features, while for RR vs. SP we obtained slightly higher classification results (maximum F1-score of 87%) after training LDA and SVM-rbf on clinical, lesion loads and metabolic features. Conclusions: Our results suggest that metabolic features are better at differentiating between relapsing-remitting and primary progressive forms, while lesion loads are better at differentiating between relapsing-remitting and secondary progressive forms. Therefore, combining clinical data with magnetic resonance lesion loads and metabolic features can improve the discrimination between relapsing-remitting and progressive forms.

8.
Front Neurosci ; 10: 615, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28123355

RESUMO

Purpose: The purpose of this paper is discriminating between tumor progression and response to treatment based on follow-up multi-parametric magnetic resonance imaging (MRI) data retrieved from glioblastoma multiforme (GBM) patients. Materials and Methods: Multi-parametric MRI data consisting of conventional MRI (cMRI) and advanced MRI [i.e., perfusion weighted MRI (PWI) and diffusion kurtosis MRI (DKI)] were acquired from 29 GBM patients treated with adjuvant therapy after surgery. We propose an automatic pipeline for processing advanced MRI data and extracting intensity-based histogram features and 3-D texture features using manually and semi-manually delineated regions of interest (ROIs). Classifiers are trained using a leave-one-patient-out cross validation scheme on complete MRI data. Balanced accuracy rate (BAR)-values are computed and compared between different ROIs, MR modalities, and classifiers, using non-parametric multiple comparison tests. Results: Maximum BAR-values using manual delineations are 0.956, 0.85, 0.879, and 0.932, for cMRI, PWI, DKI, and all three MRI modalities combined, respectively. Maximum BAR-values using semi-manual delineations are 0.932, 0.894, 0.885, and 0.947, for cMRI, PWI, DKI, and all three MR modalities combined, respectively. After statistical testing using Kruskal-Wallis and post-hoc Dunn-Sidák analysis we conclude that training a RUSBoost classifier on features extracted using semi-manual delineations on cMRI or on all MRI modalities combined performs best. Conclusions: We present two main conclusions: (1) using T1 post-contrast (T1pc) features extracted from manual total delineations, AdaBoost achieves the highest BAR-value, 0.956; (2) using T1pc-average, T1pc-90th percentile, and Cerebral Blood Volume (CBV) 90th percentile extracted from semi-manually delineated contrast enhancing ROIs, SVM-rbf, and RUSBoost achieve BAR-values of 0.947 and 0.932, respectively. Our findings show that AdaBoost, SVM-rbf, and RUSBoost trained on T1pc and CBV features can differentiate progressive from responsive GBM patients with very high accuracy.

9.
Biomed Res Int ; 2015: 842923, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413548

RESUMO

PURPOSE: We have focused on finding a classifier that best discriminates between tumour progression and regression based on multiparametric MR data retrieved from follow-up GBM patients. MATERIALS AND METHODS: Multiparametric MR data consisting of conventional and advanced MRI (perfusion, diffusion, and spectroscopy) were acquired from 29 GBM patients treated with adjuvant therapy after surgery over a period of several months. A 27-feature vector was built for each time point, although not all features could be obtained at all time points due to missing data or quality issues. We tested classifiers using LOPO method on complete and imputed data. We measure the performance by computing BER for each time point and wBER for all time points. RESULTS: If we train random forests, LogitBoost, or RobustBoost on data with complete features, we can differentiate between tumour progression and regression with 100% accuracy, one time point (i.e., about 1 month) earlier than the date when doctors had put a label (progressive or responsive) according to established radiological criteria. We obtain the same result when training the same classifiers solely on complete perfusion data. CONCLUSIONS: Our findings suggest that ensemble classifiers (i.e., random forests and boost classifiers) show promising results in predicting tumour progression earlier than established radiological criteria and should be further investigated.


Assuntos
Glioblastoma , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Estudos de Coortes , Glioblastoma/diagnóstico , Glioblastoma/epidemiologia , Glioblastoma/patologia , Humanos , Recidiva Local de Neoplasia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...