Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1355368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957808

RESUMO

Drosophila melanogaster has been at the forefront of genetic studies and biochemical modeling for over a century. Yet, the functions of many genes are still unknown, mainly because no phenotypic data are available. Herein, we present the first evidence data regarding the particular molecular and other quantifiable phenotypes, such as viability and anatomical anomalies, induced by a novel P{lacW} insertional mutant allele of the CG18135 gene. So far, the CG18135 functions have only been theorized based on electronic annotation and presumptive associations inferred upon high-throughput proteomics or RNA sequencing experiments. The descendants of individuals harboring the CG18135 P{lacW}CG18135 allele were scored in order to assess mutant embryonic, larval, and pupal viability versus Canton Special (CantonS). Our results revealed that the homozygous CG18135 P{lacW}CG18135 /CG18135 P{lacW}CG18135 genotype determines significant lethality both at the inception of the larval stage and during pupal development. The very few imago escapers that either breach or fully exit the puparium exhibit specific eye depigmentation, wing abnormal unfolding, strong locomotor impairment with apparent spasmodic leg movements, and their maximum lifespan is shorter than 2 days. Using the quantitative real-time PCR (qRT-PCR) method, we found that CG18135 is upregulated in male flies, but an unexpected gene upregulation was also detected in heterozygous mutants compared to wild-type flies, probably because of regulatory perturbations induced by the P{lacW} transposon. Our work provides the first phenotypic evidence for the essential role of CG18135, a scenario in accordance with the putative role of this gene in carbohydrate-binding processes.

2.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35742941

RESUMO

Drosophila melanogaster (the fruit fly) is a valuable experimental platform for modeling host-pathogen interactions. It is also commonly used to define innate immunity pathways and to understand the mechanisms of both host tolerance to commensal microbiota and response to pathogenic agents. Herein, we investigate how the host response to bacterial infection is mirrored in the expression of genes of Imd and Toll pathways when D. melanogaster strains with different γCOP genetic backgrounds are infected with Pseudomonas aeruginosa ATCC 27853. Using microarray technology, we have interrogated the whole-body transcriptome of infected versus uninfected fruit fly males with three specific genotypes, namely wild-type Oregon, γCOPS057302/TM6B and γCOP14a/γCOP14a. While the expression of genes pertaining to Imd and Toll is not significantly modulated by P. aeruginosa infection in Oregon males, many of the components of these cascades are up- or downregulated in both infected and uninfected γCOPS057302/TM6B and γCOP14a/γCOP14a males. Thus, our results suggest that a γCOP genetic background modulates the gene expression profiles of Imd and Toll cascades involved in the innate immune response of D. melanogaster, inducing the occurrence of immunological dysfunctions in γCOP mutants.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Imunidade Inata/genética , Masculino , Mutação , Pseudomonas aeruginosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...