Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38869573

RESUMO

This study addresses the necessity to monitor the presence of glyphosate (Gly) in waters, highlighting the need for on-site detection of Gly by using electrochemical sensors in environmental and agricultural monitoring programs. Two approaches were employed: (1) modification with graphene decorated with gold nanoparticles (AuNPs-Gr) and dispersed in either dimethylformamide (DMF) or a solution containing Nafion and isopropanol (NAF), and (2) molecularly imprinted polymers (MIPs) based on polypyrrole (PPy) deposited on gold SPEs (AuSPE). Electrochemical characterization revealed that sensors made of AuNPs-Gr/SPCE exhibited enhanced conductivity, larger active area, and improved charge transfer kinetics compared to unmodified SPEs and SPEs modified with graphene alone. However, the indirect detection mechanism of Gly via complex formation with metallic cations in AuNPs-Gr-based sensors introduces complexities and compromises sensitivity and selectivity. In contrast, MIPPy/AuSPE sensors demonstrated superior performance, offering enhanced reliability and sensitivity for Gly analysis. The MIPPy/AuSPE sensor allowed the detection of Gly concentrations as low as 5 ng/L, with excellent selectivity and reproducibility. Moreover, testing in real surface water samples from the Olt River in Romania showed recovery rates ranging from 90% to 99%, highlighting the effectiveness of the detection method. Future perspectives include expanding the investigation to monitor Gly decomposition in aquatic environments over time, providing insights into the decomposition's long-term effects on water quality and ecosystem health, and modifying regulatory measures and agricultural practices for mitigating its impact. This research contributes to the development of robust and reliable electrochemical sensors for on-site monitoring of Glyphosate in environmental and agricultural settings.

2.
Nanomaterials (Basel) ; 14(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786773

RESUMO

Climate neutrality for the year 2050 is the goal assumed at the level of the EU27+UK. As Romania is no exception, it has assumed the gradual mitigation of pollution generated by the energy sector, and by 2030, according to 'Fit for 55', the share of energy from renewable sources must reach 42.5% from total energy consumption. For the rest of the energy produced from traditional sources, natural gas and/or coal, modern technologies will be used to retain the gaseous noxes. Even if they are not greenhouse gases, NO and SO2, generated from fossil fuel combustion, cause negative effects on the environment and biodiversity. The adsorption capacity of different materials, three nanomaterials developed in-house and three commercial adsorbents, both for NO and SO2, was tackled through gas chromatography, elemental analysis, and Fourier-transform infrared spectroscopy. Fe-BTC has proven to be an excellent material for separation efficiency and adsorption capacity under studied conditions, and is shown to be versatile both in the case of NO (80.00 cm3/g) and SO2 (63.07 cm3/g). All the developed nanomaterials generated superior results in comparison to the commercial adsorbents. The increase in pressure enhanced the performance of the absorption process, while temperature showed an opposite influence, by blocking the active centers on the surface.

3.
Int J Mol Sci ; 24(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37834434

RESUMO

In the face of escalating environmental challenges, understanding the intricate relationship between plant metabolites, pollution stress, and climatic conditions is of paramount importance. This study aimed to conduct a comprehensive analysis of metabolic variations generated through 1H and 13C NMR measurements in evergreen needles collected from different regions with varying pollution levels. Multivariate analyses were employed to identify specific metabolites responsive to pollution stress and climatic factors. Air pollution indicators were assessed through ANOVA and Pearson correlation analyses. Our results revealed significant metabolic changes attributed to geographical origin, establishing these conifer species as potential indicators for both air pollution and climatic conditions. High levels of air pollution correlated with increased glucose and decreased levels of formic acid and choline. Principal component analysis (PCA) unveiled a clear species separation, largely influenced by succinic acid and threonine. Discriminant analysis (DA) confirmed these findings, highlighting the positive correlation of glucose with pollution grade. Beyond pollution assessment, these metabolic variations could have ecological implications, impacting interactions and ecological functions. Our study underscores the dynamic interplay between conifer metabolism, environmental stressors, and ecological systems. These findings not only advance environmental monitoring practices but also pave the way for holistic research encompassing ecological and physiological dimensions, shedding light on the multifaceted roles of metabolites in conifer responses to environmental challenges.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Traqueófitas , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Análise Multivariada , Glucose/análise , Poluentes Atmosféricos/análise
4.
Nanomaterials (Basel) ; 13(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836278

RESUMO

Until reaching climate neutrality by attaining the EU 2050 level, the current levels of CO2 must be mitigated through the research and development of resilient technologies. This research explored potential approaches to lower CO2 emissions resulting from combustion fossil fuels in power plant furnaces. Different nanomaterials (MOFs versus silica nanoparticles) were used in this context to compare their effectiveness to mitigate GHG emissions. Porous materials known as metal-organic frameworks (MOFs) are frequently employed in sustainable CO2 management for selective adsorption and separation. Understanding the underlying mechanism is difficult due to their textural characteristics, the presence of functional groups and the variation in technological parameters (temperature and pressure) during CO2-selective adsorption. A silica-based nanomaterial was also employed in comparison. To systematically map CO2 adsorption as a function of the textural and compositional features of the nanomaterials and the process parameters set to a column-reactor system (CRS), 160 data points were collected for the current investigation. Different scenarios, as a function of P (bar) or as a function of T (K), were designed based on assumptions, 1 and 5 vs. 1-10 (bar) and 313.15 and 373.15 vs. 313.15-423.15 (K), where the regression analyses through Pearson coefficients of 0.92-0.95, coefficients of determination of 0.87-0.90 and p-values < 0.05, on predictive and on-site laboratory data, confirmed the performances of the CRS.

5.
Sci Total Environ ; 899: 165344, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37414185

RESUMO

Compound specific isotope analysis was extensively used to characterise the environmental processes associated with the abiotic and biotic transformation of persistent halogenated organic pollutants including those of contaminants of emerging concern (CECs). In the last years, the compound specific isotope analysis was applied as tool to evaluate the environmental fate and was expanded to larger molecules like brominated flame retardants and polychlorinated biphenyls. Multi-element (C, H, Cl, Br) CSIA methods have been also employed both in laboratory and field experiments. Nevertheless, despite the instrumental advances of isotope ratio mass spectrometers systems, the instrumental detection limit for gas chromatography-combustion-isotope ratio mass spectrometer (GC-C-IRMS) systems is challenging, especially when it is utilized to δ13C analysis. Liquid chromatography-combustion isotope ratio mass spectrometry methods are challenging, taking into consideration the chromatographic resolution required when analysing complex mixtures. For chiral contaminants, enantioselective stable isotope analysis (ESIA) has turned up as alternative approach but, up to now, it has been used for a limited number of compounds. Taking into consideration the occurrence of new emerging halogenated organic contaminants, new GC and LC methods for non-target screening using high resolution mass spectrometry are needed to be developed prior to the compound specific isotope analysis (CSIA) methods.

6.
Sci Total Environ ; 886: 163967, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164074

RESUMO

Some organic pollutants including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) have been banned from production worldwide, but due to their toxicity and persistence are still of concern. Also, unintentional by-products of combustion and industrial processes such as polycyclic aromatic hydrocarbons (PAHs), represent a permanent threat to the safety of the environment and the population. In this study, surface sediment samples from the middle and lower Olt River Basin (ORB), Romania, including dams, the main tributaries and the confluence with Danube River were collected during seasonal sampling campaigns in 2019 and analyzed for 13 OCPs, 12 PCBs and 15 PAHs in order to evaluate the impact of the main anthropogenic activities in the area (industrial activities and agriculture) and the ecological status of the ORB. The registered levels of OCPs, PCBs and PAHs in surface sediments varied from low to significantly polluted environments, indicating a clear spatial distribution between sites based on concentrations and congener profiles correlated with the influence of anthropogenic activities in the surrounding area. Based on some molecular diagnostic ratio and multivariate statistical analysis, both non-point sources and point sources deposition by surface runoff or atmospheric deposition were identified. Overall, the contamination profile of the study area reveals significant amounts of organochlorine compounds, resulting from the industrial production of chlorinated products, including lindane, but also from the long-term agricultural use of both HCHs and DDTs, more than half of the sites having levels that pose a potential risk for benthic organisms. Therefore, levels of POPs in the hot-spots sampling locations raise numerous concerns about the safety of the environment and the population in the region, requiring immediate actions.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Poluentes Ambientais/análise , Rios , Romênia , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Medição de Risco , Hidrocarbonetos Policíclicos Aromáticos/análise , Sedimentos Geológicos
7.
Pharmaceutics ; 16(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38258063

RESUMO

Nowadays, an increased concern regarding using natural products for their health benefits can be observed. The aim of this study was to assess and compare several phenolic compounds found in 15- to 60-year-old Douglas fir, silver fir, larch, pine, and spruce needle and bark extracts and to evaluate their antioxidant and antimicrobial activities. Spectrophotometric assays were used to determine the total polyphenol content and the antioxidant activity that was assessed by using the DPPH• radical scavenging assay (RSA), the ferric reducing antioxidant power assay (FRAP), and the ABTS•+ radical cation scavenging assay (ABTS). The phytochemical content was determined by using high-performance liquid chromatography, and the antimicrobial activity was determined by assessing the minimal inhibition concentration (MIC). The results of the study show a total polyphenol content of 62.45-109.80 mg GAE/g d.w. and an antioxidant activity of 91.18-99.32% for RSA, 29.16-35.74 µmol TE/g d.w. for FRAP, and 38.23-53.57 µmol TE/g d.w. for ABTS. The greatest quantity of phenolic compound for most of the extracts was for (+)-catechin, and it had values between 165.79 and 5343.27 µg/g d.w. for these samples. The antimicrobial inhibition for all the extracts was the strongest for Staphylococcus aureus (MIC 62.5-125 µg/mL). The extracts analyzed could be used for their bioactive potential after further investigations.

8.
Materials (Basel) ; 15(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36233935

RESUMO

The capitalization of agri-food waste is essential for the sustainability of a circular economy. This work focuses on a solution to eliminate such waste, meat and bone meal (MBM), which is produced in large quantities by the food industry and is prohibited for use as animal feed under the European directives. Therefore, with the focus of converting waste to energy, the catalytic pyrolysis of MBM in the presence of mesoporous silica nanocatalysts (SBA-3 and SBA-16 materials and metallic derivates) was investigated in a home-made reactor for the production of renewable energy. The mesoporous silica materials were synthesized using relatively simple methods and then characterized in order to determine their morpho-structural characteristics. The MBM pyrolysis behavior under different experimental conditions was examined in detail, both in the presence and absence of the new catalysts. The resulting MBM-based pyrolysis products, MBMPYOILs and MBMPYGASs, were also assessed as potential alternative fuels, highlighting comparable energy values to conventional fuels. The outcomes of this investigation offer a potential pathway to the clean production of gas and oil, thus promoting the high-grade utilization of MBM waste.

9.
Foods ; 11(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36140966

RESUMO

The 1H-NMR carbohydrates profiling was used to discriminate fruits from Rosaceae family in terms of botanical origin and harvest year. The classification was possible by application of multivariate data analysis, such as principal component analysis (PCA), linear discriminant analysis (LDA) and Pearson analysis. Prior, a heat map was created based on 1H-NMR signals which offered an overview of the content of individual carbohydrates in plum, apricot, cherry and sour cherry, highlighting the similarities. Although, the PCA results were almost satisfactory, based only on carbohydrates signals, the LDA reached 94.39% and 100% classification of fruits according to their botanical origin and growing season, respectively. Additionally, a potential association with the relevant climatic data was explored by applying the Pearson analysis. These findings are intended to create an efficient NMR-based solution capable of differentiating fruit juices based on their basic sugar profile.

10.
Nutrients ; 14(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35745094

RESUMO

Natural ecosystems are polluted with various contaminants, and among these heavy metals raise concerns due to their side effects on both environment and human health. An investigation was conducted on essential oil samples, comparing similar products between seven producers, and the results indicated a wide variation of metal content. The recommended limits imposed by European Union regulations for medicinal plants are exceeded only in Mentha × pipperita (Adams, 0.61 mg/kg). Except for Thymus vulgaris, the multivariate analysis showed a strong correlation between toxic and microelements (p < 0.001). We verified plant species−specific bioaccumulation patterns with non-metric multidimensional scaling analysis. The model showed that Adams, Doterra, Hypericum, and Steaua Divina essential oils originated from plants containing high micro and macroelement (Cu, Mn, Mg, Na) levels. We noted that the cancer risk values for Ni were the highest (2.02 × 10−9−7.89 × 10−7). Based on the target hazard quotient, three groups of elements were associated with a possible risk to human health, including As, Hg, and Cd in the first group, Cr, Mn, Ni, and Co in the second, and Zn and Al in the third. Additionally, the challenge of coupling inter-element relationships through a network plot analysis shows a considerable probability of associating toxic metals with micronutrients, which can address cumulative risks for human consumers.


Assuntos
Mercúrio , Metais Pesados , Óleos Voláteis , Ecossistema , Monitoramento Ambiental/métodos , Humanos , Mercúrio/análise , Medição de Risco
11.
J Food Sci Technol ; 59(5): 1715-1726, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35531391

RESUMO

In this work a comparative assessment was performed on individual and total polyphenols and biochemical properties of some Feteasca Neagra red wines obtained from grapes cultivated with different farming technologies (organic vs. conventional). The effect of a 30% cluster thinning treatment in both organic and conventional vineyard, compared to control plots with no thinning, was also monitored. The wines were obtained during two vintages, one with more favourable climatic conditions and one less favourable, in the period 2010-2019. Our results indicate that by applying a 30% cluster thinning treatment in the vineyard it is possible to increase the concentration of total and individual polyphenols of the resulted Feteasca Neagra wines. Furthermore, the differences observed between the phenolic profiles of wines from conventionally and organically produced grapes showed that organic Feteasca Neagra wines have higher phenolic compounds concentrations and antioxidant properties, with some important individual phenols accumulating in larger quantities than in the case of conventional wines. The beneficial effect of the organic cultivation is more evident in years characterised by less favourable climatic conditions. The statistical analysis tools applied to the analytical data allowed a good discrimination of experimental wine variants according to the vine cultivation technology (organic vs. conventional, with and without cluster thinning) and vintage. Thus, the results indicated that the applied cultivation technologies, especially when both organic cultivation and cluster thinning are combined, can greatly improve the polyphenolic content of Feteasca Neagra wines. The absolute value of the increase in polyphenol concentration was higher in favourable years, but the relative increase, in percentages, as compared to control wines, was higher in less favourable years. The combination of both viticultural practices may be thus exploited in order to obtain wines with higher polyphenolic content, which leads to better structure, better ageing potential, enhanced nutritional and antioxidant properties.

12.
Sci Rep ; 12(1): 880, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042928

RESUMO

Heavy metal pollution of river freshwater environments currently raises significant concerns due to the toxic effects and the fact that heavy metal behavior is not fully understood. This study assessed the contamination level of eight heavy metals and trace elements (Cr, Ni, Cu, Zn, As, Pb, Cd, and Hg) in the surface sediments of 19 sites in 2018 during four periods (March, May, June, and October) in Olt River sediments. Multivariate statistical techniques were used, namely, one-way ANOVA, person product-moment correlation analysis, principal component analysis, hierarchical cluster analysis, and sediment quality indicators such as the contamination factor and pollution load index. The results demonstrated higher contents of Ni, Cu, Zn, As, Pb, Cd, and Hg, with values that were over 2.46, 4.40, 1.15, 8.28, 1.10, 1.53, and 3.71 times more, respectively, compared with the national quality standards for sediments. We observed a positive significant statistical correlation (p < 0.001) in March between elevation and Pb, Ni, Cu, Cr, and Zn and a negative correlation between Pb and elevation (p = 0.08). Intermetal associations were observed only in March, indicating a relationship with river discharge from spring. The PCA sustained mainly anthropogenic sources of heavy metals, which were also identified through correlation and cluster analyses. We noted significant differences between the Cr and Pb population means and variances (p < 0.001) for the data measured in March, May, June, and October. The contamination factor indicated that the pollution level of heavy metals was high and significant for As at 15 of the 19 sites. The pollution load index showed that over 89% of the sites were polluted by metals to various degrees during the four periods investigated. Our results improve the knowledge of anthropogenic versus natural origins of heavy metals in river surface sediments, which is extremely important in assessing environmental and human health risks and beneficial for decision-maker outcomes for national freshwater management plans.

14.
Plants (Basel) ; 10(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34961215

RESUMO

In this work, the challenges and progression in stable isotope investigation, from the analytical tools and technical sample preparation procedures to the dendroclimatological experiments, were reviewed in terms of their use to assess tree physiological responses to environmental changes. Since the isotope signature of whole wood is not always a reliable tool in studying the climate changes, cellulose is often preferred as the study material in paleoclimatic studies. Nevertheless, the isotope analysis of cellulose is challenging due to the difficulty to remove the other wood components (extractives, lignin, pectin, and hemicelluloses). Additionally, in the case of hydrogen isotope analysis, about 30% of the hydrogen atoms of cellulose are exchanged with the surrounding water, which complicates the isotope analysis. In recent years, more automated isotope analysis methods were developed based on high temperature pyrolysis of cellulose, followed by the chromatographic separation of H2 from CO and by their individual isotope analysis using isotope ratio mass spectrometry. When used to investigate climate factors, the combined isotope analysis δ13C and δ18O appears to be the most promising isotope tool. In contrast, the role of δ2H values is yet to be elucidated, together with the development of new methods for hydrogen isotope analysis.

15.
Molecules ; 26(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34885663

RESUMO

The present study was conducted to quantify the daily intake and target hazard quotient of four essential elements, namely, chromium, cobalt, nickel, and copper, and four toxic trace elements, mercury, cadmium, lead, and arsenic. Thirty food items were assigned to five food categories (seeds, leaves, powders, beans, and fruits) and analyzed using inductively coupled plasma-mass spectrometry. Factor analysis after principal component extraction revealed common metal patterns in all foodstuffs, and using hierarchical cluster analysis, an association map was created to illustrate their similarity. The results indicate that the internationally recommended dietary allowance was exceeded for Cu and Cr in 27 and 29 foodstuffs, respectively. According to the tolerable upper level for Ni and Cu, everyday consumption of these elements through repeated consumption of seeds (fennel, opium poppy, and cannabis) and fruits (almond) can have adverse health effects. Moreover, a robust correlation between Cu and As (p < 0.001) was established when all samples were analyzed. Principal component analysis (PCA) demonstrated an association between Pb, As, Co, and Ni in one group and Cr, Cu, Hg, and Cd in a second group, comprising 56.85% of the total variance. For all elements investigated, the cancer risk index was within safe limits, highlighting that lifetime consumption does not increase the risk of carcinogens.


Assuntos
Arsênio/análise , Cádmio/análise , Cromo/análise , Cobalto/análise , Cobre/análise , Chumbo/análise , Mercúrio/análise , Níquel/análise , Espectrofotometria Atômica/métodos , Supermercados , Oligoelementos/análise , Humanos , Romênia
16.
Plants (Basel) ; 10(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34579362

RESUMO

The producers of essential oils from the Republic of Moldova care about the quality of their products and at the same time, try to capitalize on the waste from processing. The purpose of the present study was to analyze the chemical composition of lavender (Lavanda angustifolia L.) essential oil and some by-products derived from its production (residual water, residual herbs), as well as to assess their "in vitro" antimicrobial activity. The gas chromatography-mass spectrometry analysis of essential oils produced by seven industrial manufacturers led to the identification of 41 constituents that meant 96.80-99.79% of the total. The main constituents are monoterpenes (84.08-92.55%), followed by sesquiterpenes (3.30-13.45%), and some aliphatic compounds (1.42-3.90%). The high-performance liquid chromatography analysis allowed the quantification of known triterpenes, ursolic, and oleanolic acids, in freshly dried lavender plants and in the residual by-products after hydrodistillation of the essential oil. The lavender essential oil showed good antibacterial activity against Bacillus subtilis, Pseudomonas fluorescens, Xanthomonas campestris, Erwinia carotovora at 300 µg/mL concentration, and Erwinia amylovora, Candida utilis at 150 µg/mL concentration, respectively. Lavender plant material but also the residual water and ethanolic extracts from the solid waste residue showed high antimicrobial activity against Aspergillus niger, Alternaria alternata, Penicillium chrysogenum, Bacillus sp., and Pseudomonas aeroginosa strains, at 0.75-6.0 µg/mL, 0.08-0.125 µg/mL, and 0.05-4.0 µg/mL, respectively.

17.
Sci Total Environ ; 801: 149672, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34438148

RESUMO

The biodegradation of hexachlorocyclohexanes (HCHs) is known to be accompanied by isotope fractionation of carbon (13C/12C), but no systematic studies were performed on abiotic degradation of HCH isomers by iron (II) minerals. In this study, we explored the carbon isotope fractionation of α-HCH during dechlorination by FeS nanoparticles at different pH values. The results of three different experiments showed that the apparent rate constants during dehalogenation of α-HCH by FeS increased with pH. The lowest apparent rate constant value α-HCH during dehalogenation by FeS was 0.009 d-1 at pH value of 2.4, while the highest was 1.098 d-1 at pH 11.8. α-HCH was completely dechlorinated by FeS only at pH values 9.9 and 11.8, while the corresponding apparent rate constants were 0.253 d-1 and 1.098 d-1, respectively. Regardless of the pH used, the 1,2,4-trichlorobenzene (1,2,4-TCB), 1,2-dichlorobenzene (1,2-DCB), and benzene were the dominant degradation products of α-HCH. An enrichment factor (εC) of -4.7 ± 1.3‰ was obtained for α-HCH using Rayleigh model, which is equivalent to an apparent kinetic isotope effect (AKIEC) value of 1.029 ± 0.008 for dehydrohalogenation, and of 1.014 ± 0.004 for dihaloelimination, respectively. The magnitude of isotope fractionation from this study suggests that abiotic isotope fractionation by FeS must be taken into account in anoxic sediments and aquifers contaminated with HCH isomers, when high concentrations of FeS are present in the above-mentioned anoxic environments.


Assuntos
Nanopartículas , Biodegradação Ambiental , Isótopos de Carbono/análise , Compostos Ferrosos , Hexaclorocicloexano , Concentração de Íons de Hidrogênio
18.
Foods ; 10(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525694

RESUMO

Apple (Malus domestica Borkh.), a popular and widely cultivated fruit world-wide, contains bioactive compounds responsible for their health benefits. Here we report the amounts of some bioactive compounds: two major triterpenes (oleanolic and ursolic acids) and polyphenols (phenolic acids, flavan-3-ols, flavonoids and t-resveratrol), together with bioactive properties of twelve apple cultivars measured by chromatographic and spectrophotometric methods. Significant variations were found comparing the bioactive potential of the investigated cultivars. High contents of phenolic acids were identified in the Montuan, Golden Delicious and Cretesc cultivars, while the most flavonoid dominant was the Richard cultivar. Starkrimson, Jonatan, Beliy Naliv and Richard cultivars present higher antioxidant capacity. Oleanolic acid ranged from 11 to 83 mg/g apple extract, while ursolic acid ranged from 55 to 436 mg/g apple extract, with higher amounts in Richard and Montuan cultivars. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) allowed the discrimination of apple cultivars depending on polyphenolic and triterpene acids composition. Caffeic acid, gallic acid and epicatechin were identified as the main bioactive compounds in Starkrimson, Jonathan, Beliy Naliv and Richard cultivars, while ursolic and oleanolic acids were identified in high amounts in Richard, Montuan, Golden Delicious, Idared and Beliy Naliv apple cultivars. The results obtained in this study will contribute to the understanding of the bioactive composition of apples as well as the importance of their capitalization to obtain value-added products that promote human health.

19.
Environ Pollut ; 267: 115505, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892015

RESUMO

The concentrations of twelve heavy metals and trace elements (Cr, Mn, Co, Ni, Cu, As, Cd, Pb, Hg, Zn, Fe, and Al) in bed sediment and river freshwater that received sewage discharge, industrial wastewater inputs and mining residue were discussed. Spatial distribution, intra-annual trends and diffuse flux in 2019 in the middle and lower reaches of Olt River Basin (ORB) were investigated using inductively coupled mass spectrometry (ICP-MS) and atomic absorption spectroscopy (AAS). We applied correlation and principal component analysis (PCA) to quantify metal distribution relationship within environmental factors (pH, air temperature) and organic matter existing in the ORB. Moreover, the 87Sr/86Sr and 206Pb/207Pb isotope ratios analysis was employed to conclude the possible origin of the contamination. PCA analysis categorized metal presence in the four-component model, which explains 91% (May), 92% (July) and 93% (September) of the variance and indicates the potential origins of pollutants. The HCA and correlation analysis emphasized the relationship between trace elements, heavy metals in water and sediments and physicochemical characteristics of water. It was observed a high discrepancy in metal distribution between riverbed sediments and water body. In September, correlation indices highlighted sparse positive relationship with trace elements in water and mainly negative correlation values with trace elements from sediments. The origin of pollutants in sediments and water appear to be both natural and human-related activities. In all seasons increased the total exchangeable concentration of Ni, Cu and Zn in the sediments downstream sewage treatment plants and upstream of dams. The consideration of environmental factors and physicochemical characteristics of water is required to develop strategies for pollution management, assessment and mitigation in the actual condition of climate change. This study evaluated the heavy metals pollution in the Olt River Basin over three periods in 2019 under human-induced changes.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Romênia , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 722: 137914, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208267

RESUMO

This paper is an overview of screening methods recently developed for emerging halogenated contaminants and their transformation products. The target screening methods are available only for a limited number of emerging pollutants since the reference standards for these compounds are not always available, but a risk assessment of those micropollutants in environment must be performed anyhow. Therefore, the chromatographic techniques hyphenated with high resolution mass spectrometry (HRMS) trend to become indispensable methods for suspect and non-target screening of emerging halogenated contaminants. HRMS is also an effective tool for tentatively identification of the micropollutants' transformation products existing in much lower concentrations. To assess the transformation pathway of halogenated contaminants in environment, the non-target screening methods must be combined with biodegradation lab experiments and also with advanced oxidation and reduction processes that can mimic the transformation on these contaminants in environment. It is expected that in the future, the accurate-mass full-spectra of transformation products recorded by HRMS will be the basic information needed to elucidate the transformation pathways of emerging halogenated contaminants in aquatic environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...