Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Neurosci ; 47(3): 631-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22212489

RESUMO

We use 1,2-diacetylbenzene (1,2-DAB) to probe molecular mechanisms of proximal giant neurofilamentous axonopathy (PGNA), a pathological hallmark of amyotrophic lateral sclerosis. The spinal cord proteome of rodents displaying 1,2-DAB PGNA suggests a reduction in the abundance of α-II spectrin (Spna2), a key protein in the maintenance of axonal integrity. Protein immunoblotting indicates that this reduction is due to Spna2 degradation. We investigated the importance of such degradation in 1,2-DAB PGNA. Spna2 mutant mice lacking a calpain- and/or caspase-sensitive domain (CSD), thus hypothetically resistant to 1,2-DAB, and wild-type littermates, were treated with 1,2-DAB, 35 mg/kg/day, or saline control, for 3 weeks. 1,2-DAB induced motor weakness and PGNA, irrespective of the genotype. Spna2-calpain breakdown products were not detected in mutant mice, which displayed a normal structure of the nervous system under saline treatment. Intriguingly, treatment with 1,2-DAB reduced the abundance of the caspase-specific 120-kDa Spna2 breakdown products. Our findings indicate that degradation of Spna2 by calpain- and/or caspase is not central to the pathogenesis of 1,2-DAB axonopathy. In addition, the Spna2-CSD seems to be not required for the maintenance of the cytoskeleton integrity. Our conceptual framework offers opportunities to study the role of calpain-caspase cross talk, including that of the protease degradomics, in models of axonal degeneration.


Assuntos
Calpaína/genética , Proteínas de Transporte/metabolismo , Caspases/genética , Engenharia Genética/métodos , Proteínas dos Microfilamentos/metabolismo , Espectrina/metabolismo , Esclerose Lateral Amiotrófica/induzido quimicamente , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Animais , Calpaína/metabolismo , Proteínas de Transporte/genética , Caspases/metabolismo , Modelos Animais de Doenças , Neuropatia Axonal Gigante/induzido quimicamente , Neuropatia Axonal Gigante/enzimologia , Neuropatia Axonal Gigante/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas dos Microfilamentos/genética , Espectrina/genética
2.
Apoptosis ; 10(1): 153-66, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15711931

RESUMO

Viral double-stranded RNA (dsRNA) is a ubiquitous intracellular "alert signal" used by cells to detect viral infection and to mount anti-viral responses. DsRNA triggers a rapid (complete within 2-4 h) apoptosis in the highly-susceptible HeLa cell line. Here, we demonstrate that the apical event in this apoptotic cascade is the activation of procaspase 8. Downstream of caspase 8, the apoptotic signaling cascade bifurcates into a mitochondria-independent caspase 8/caspase 3 arm and a mitochondria-dependent, caspase 8/Bid/Bax/Bak/cytochrome c arm. Both arms impinge upon, and activate, procaspase 9 via two different cleavage sites within the procaspase 9 molecule (D330 and D315, respectively). This is the first in vivo demonstration that the "effector" caspase 3 plays an "initiator" role in the regulation of caspase 9. The dsRNA-induced apoptosis is potentiated by the inhibition of protein synthesis, whose role is to accelerate the execution of all apoptosis steps downstream of, and including, the activation of caspase 8. Thus, efficient apoptosis in response to viral dsRNA results from the co-operation of the two major apical caspases (8 and 9) and the dsRNA-activated protein kinase R (PKR)/ribonuclease L (RNase L) system that is essential for the inhibition of protein synthesis in response to viral infection.


Assuntos
Apoptose , Neoplasias da Mama/patologia , Caspases/metabolismo , Vírus da Encefalomiocardite/fisiologia , RNA de Cadeia Dupla/metabolismo , Caspase 9 , Linhagem Celular Tumoral , Vírus da Encefalomiocardite/genética , Ativação Enzimática , Feminino , Células HeLa , Humanos
3.
Apoptosis ; 10(1): 167-76, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15711932

RESUMO

Rapid elimination of virus-infected cells by apoptosis is an efficient anti-viral strategy. Double-stranded RNA (dsRNA), a viral product, is potently and rapidly apoptogenic in susceptible cells. Caspase 8 plays an important role in the dsRNA-induced apoptosis; however, the mechanisms of caspase 8 activation in response to dsRNA are unknown. We demonstrate here that, in HeLa cells, the dsRNA-triggered activation of caspase 8 is independent of ongoing proteins synthesis (and is, therefore, independent of changes in pro- and anti-apoptotic gene expression) and involves the formation of multiprotein dsRNA-triggered death inducing signaling complexes (dsRNA-DISCs). DsRNA-DISCs contain FADD, TRADD, and caspase 8; however, several experimental approaches suggest that death ligands and death receptors (such as Fas/Apo1 and DR4/Apo2) are not involved in the formation of dsRNA-DISCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Caspases/metabolismo , RNA de Cadeia Dupla/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Caspase 8 , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Proteína de Domínio de Morte Associada a Fas , Células HeLa , Humanos
4.
Crit Rev Oncol Hematol ; 39(1-2): 79-86, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11418304

RESUMO

Targeting CD22 on human B-cells with a monoclonal antibody conjugated to a cytotoxic RNAse causes potent and specific killing of the lymphoma cells in vitro. This translates to anti-tumor effects in human lymphoma models in SCID mice. RNA damage caused by RNAses could be an important alternative to standard DNA damaging chemotherapeutics. Moreover, targeted RNAses may overcome problems of toxicity and immunogenicity associated with plant or bacterial toxin containing immunotoxins.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , Moléculas de Adesão Celular , Imunotoxinas/uso terapêutico , Lectinas , Linfoma de Células B/tratamento farmacológico , Ribonucleases/uso terapêutico , Animais , Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/imunologia , Humanos , Imunotoxinas/química , RNA/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
5.
Mol Cell Biol ; 21(1): 61-72, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11113181

RESUMO

Double-stranded RNA (dsRNA) of viral origin triggers two programs of the innate immunity in virus-infected cells. One is intended to decrease the rate of host cell protein synthesis and thus to prevent viral replication. This program is mediated by protein kinase R (PKR) and by RNase L and contributes, eventually, to the self-elimination of the infected cell via apoptosis. The second program is responsible for the production of antiviral (type I) interferons and other alarmone cytokines and serves the purpose of preparing naive cells for the viral invasion. This second program requires the survival of the infected cell and depends on the expression of antiapoptotic genes through the activation of the NF-kappaB transcription factor. The second program therefore relies on ongoing transcription and translation. It has been proposed that PKR plays an essential role in the activation of NF-kappaB by dsRNA. Here we present evidence that the dsRNA-induced NF-kappaB activity and the expression of beta interferon and inflammatory cytokines do not require either PKR or RNase L. Our results indicate, therefore, that the two dsRNA-activated programs are separate and can function independently of each other.


Assuntos
Vírus da Encefalomiocardite/genética , Endorribonucleases/metabolismo , Proteínas I-kappa B , NF-kappa B/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , eIF-2 Quinase/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Apoptose , Linhagem Celular , Cisteína Endopeptidases/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/deficiência , Endorribonucleases/genética , Deleção de Genes , Regulação da Expressão Gênica , Interferon beta/genética , Interleucina-6/genética , Camundongos , Complexos Multienzimáticos/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Ubiquitinas/metabolismo , eIF-2 Quinase/deficiência , eIF-2 Quinase/genética
6.
Cancer Res ; 60(7): 1983-94, 2000 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10766189

RESUMO

Cytotoxic endoribonucleases (RNases) possess a potential for use in cancer therapy. However, the molecular determinants of RNase-induced cell death are not well understood. In this work, we identify such determinants of the cytotoxicity induced by onconase, an amphibian cytotoxic RNase. Onconase displayed a remarkable specificity for tRNA in vivo, leaving rRNA and mRNA apparently undamaged. Onconase-treated cells displayed apoptosis-associated cell blebbing, nuclear pyknosis and fragmentation (karyorrhexis), DNA fragmentation, and activation of caspase-3-like activity. The cytotoxic action of onconase correlated with inhibition of protein synthesis; however, we present evidence for the existence of a mechanism of onconase-induced apoptosis that is independent of inhibition of protein synthesis. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe) fluoromethyl ketone (zVADfmk), at concentrations that completely prevent apoptosis and caspase activation induced by ligation of the death receptor Fas, had only a partial protective effect on onconase-induced cell death. The proapoptotic activity of the p53 tumor suppressor protein and the Fas ligand/Fas/Fas-associating protein with death domain (FADD)/caspase-8 proapoptotic cascade were not required for onconase-induced apoptosis. Procaspases-9, -3, and -7 were processed in onconase-treated cells, suggesting the involvement of the mitochondrial apoptotic machinery in onconase-induced apoptosis. However, the onconase-induced activation of the caspase-9/caspase-3 cascade correlated with atypically little release of cytochrome c from mitochondria. In turn, the low levels of cytochrome c released from mitochondria correlated with a lack of detectable translocation of proapoptotic Bax from the cytosol onto mitochondria in response to onconase. This suggests the possibility of involvement of a different, potentially Bax- and cytochrome c-independent mechanism of caspase-9 activation in onconase-treated cells. As one possible mechanism, we demonstrate that procaspase-9 is released from mitochondria in onconase-treated cells. A detailed understanding of the molecular determinants of the cytotoxic action of onconase could provide means of positive or negative therapeutic modulation of the activity of this potent anticancer agent.


Assuntos
Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Proteínas do Ovo/metabolismo , Proteínas do Ovo/toxicidade , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2 , RNA de Transferência/metabolismo , Ribonucleases/metabolismo , Ribonucleases/toxicidade , Apoptose/fisiologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cicloeximida/toxicidade , Grupo dos Citocromos c/metabolismo , Emetina/toxicidade , Células HeLa , Humanos , Leucina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , Especificidade por Substrato , Proteína X Associada a bcl-2
7.
Mol Cell Biol Res Commun ; 4(2): 122-8, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11170843

RESUMO

Onconase, an anticancer ribonuclease, damages cellular tRNA and causes caspase-dependent apoptosis in targeted cells (M. S. Iordanov, O. P. Ryabinina, J. Wong, T. H. Dinh, D. L. Newton, S. M. Rybak, and B. E. Magun. Cancer Res. 60, 1983-1994, 2000). The proapoptotic action of onconase depends on its RNase activity, but the molecular mechanisms leading to RNA damage-induced caspase activation are completely unknown. In this study, we have investigated whether onconase activates two signal-transduction pathways commonly stimulated by conventional chemo- and radiotherapy, namely the stress-activated protein kinase (SAPK) cascade and the pathway leading to the activation of nuclear factor-kappa B (NF-kappaB). We found that, in all cell types tested, onconase is a potent activator of SAPK1 (JNK1 and JNK2) and SAPK2 (p38 MAP kinase), but that it is incapable of activating NF-kappaB. Inhibition of p38 MAP kinase activity with a pharmacological inhibitor, SB203580, demonstrated that p38 MAP kinase is not required for onconase cytotoxicity. Using explanted fibroblasts from mice that contain targeted disruption of both jnk1 and jnk2 alleles, we found that JNKs are important mediators of onconase-induced cytotoxicity. Surprisingly, following the immortalization of these same cells with human papilloma virus (HPV16) gene products E6 and E7, additional proapoptotic pathways (exclusive of JNK) were provoked by onconase. Our results demonstrate that onconase may activate proapoptotic pathways in tumor cells that are not able to be accessed in normal cells. These results present the possibility that the cytotoxic activity of onconase in normal cells may be reduced by blocking the activity of JNKs.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Ligação ao Cálcio , Caspases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática , Inibidores Enzimáticos , Amarelo de Eosina-(YS) , Células HeLa/efeitos dos fármacos , Hematoxilina , Humanos , Immunoblotting , Ligases/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína Quinase 8 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus , Fosforilação , Sinaptotagminas , Transfecção , Células Tumorais Cultivadas/metabolismo , Células Tumorais Cultivadas/virologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
8.
Mol Cell Biol ; 20(2): 617-27, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10611240

RESUMO

Double-stranded RNA (dsRNA) accumulates in virus-infected mammalian cells and signals the activation of host defense pathways of the interferon system. We describe here a novel form of dsRNA-triggered signaling that leads to the stimulation of the p38 mitogen-activated protein kinase (p38 MAPK) and the c-Jun NH(2)-terminal kinase (JNK) and of their respective activators MKK3/6 and SEK1/MKK4. The dsRNA-dependent signaling to p38 MAPK was largely intact in cells lacking both RNase L and the dsRNA-activated protein kinase (PKR), i. e., the two best-characterized mediators of dsRNA-triggered antiviral responses. In contrast, activation of both MKK4 and JNK by dsRNA was greatly reduced in cells lacking RNase L (or lacking both RNase L and PKR) but was restored in these cells when introduction of dsRNA was followed by inhibition of ongoing protein synthesis or transcription. These results are consistent with the notion that the role of RNase L and PKR in the activation of MKK4 and JNK is the elimination, via inhibition of protein synthesis, of a labile negative regulator(s) of the signaling to JNK acting upstream of SEK1/MKK4. In the course of these studies, we identified a long-sought site of RNase L-mediated cleavage in the 28S rRNA, which could cause inhibition of translation, thus allowing the activation of JNK by dsRNA. We propose that p38 MAPK is a general participant in dsRNA-triggered cellular responses, whereas the activation of JNK might be restricted to cells with reduced rates of protein synthesis. Our studies demonstrate the existence of alternative (RNase L- and PKR-independent) dsRNA-triggered signaling pathways that lead to the stimulation of stress-activated MAPKs. Activation of p38 MAPK (but not of JNK) was demonstrated in mouse fibroblasts in response to infection with encephalomyocarditis virus (ECMV), a picornavirus that replicates through a dsRNA intermediate. Fibroblasts infected with EMCV (or treated with dsRNA) produced interleukin-6, an inflammatory and pyrogenic cytokine, in a p38 MAPK-dependent fashion. These findings suggest that stress-activated MAPKs participate in mediating inflammatory and febrile responses to viral infections.


Assuntos
Vírus da Encefalomiocardite/fisiologia , Endorribonucleases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA de Cadeia Dupla/farmacologia , eIF-2 Quinase/metabolismo , Animais , Linhagem Celular , Vírus da Encefalomiocardite/genética , Endorribonucleases/genética , Ativação Enzimática/efeitos dos fármacos , Fibroblastos , Deleção de Genes , Humanos , Interleucina-6/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/fisiologia , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Ratos , Proteínas Repressoras/metabolismo , eIF-2 Quinase/genética , Proteínas Quinases p38 Ativadas por Mitógeno
9.
J Biol Chem ; 274(36): 25801-6, 1999 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-10464319

RESUMO

Irradiation of mammalian cells with ultraviolet-B radiation (UV-B) triggers the activation of a group of stress-activated protein kinases known as c-Jun NH(2)-terminal kinases (JNKs). UV-B activates JNKs via UV-B-induced ribotoxic stress. Because oxidative stress also activates JNKs, we have addressed the question of whether the ribotoxic and the oxidative stress responses are mechanistically similar. The pro-oxidants sodium arsenite, cadmium chloride, and hydrogen peroxide activated JNK1 with slow kinetics, whereas UV-B potentiated the activity of JNK1 rapidly. N-acetyl cysteine (a scavenger of reactive oxygen intermediates) abolished the ability of all oxidative stressors tested to activate JNK1, but failed to affect the activation of JNK1 by UV-B or by another ribotoxic stressor, the antibiotic anisomycin. In contrast, emetine, an inhibitor of the ribotoxic stress response, was unable to inhibit the activation of JNK1 by oxidative stressors. Although UV-A and long wavelength UV-B are the spectral components of the ultraviolet solar radiation that cause significant oxidative damage to macromolecules, the use of a filter to eliminate the radiation output from wavelengths below 310 nm abolished the activation of JNK1 by UV. Our results are consistent with the notion that UV-B and oxidative stressors trigger the activation of JNK1 through different signal transduction pathways.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Animais , Células Cultivadas , Ativação Enzimática/efeitos da radiação , Fibroblastos , Proteínas Quinases JNK Ativadas por Mitógeno , Estresse Oxidativo , Ratos , Raios Ultravioleta
10.
Biochem Biophys Res Commun ; 261(2): 464-71, 1999 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-10425208

RESUMO

Phosphorylation of p53 at serine 389 has been shown to be responsive uniquely to UV but not gamma irradiation. This report describes identification of the UV-responsive p38MAPK protein as a serine 389 kinase. The immunoprecipitated p38MAPK from UV-irradiated murine embryonic testicular carcinoma F9 cells phosphorylated the serine 392 residue but not serine 15 of the human p53 protein in vitro and this phosphorylation was inhibited by a p38MAPK-specific chemical inhibitor SB203580. The inhibitor also remarkably alleviated the UV-caused induction and serine 389 but not serine 15 phosphorylation of the murine p53 protein in vivo. Subsequently, this compound suppressed transcriptional activity of p53 and partially retarded UV-induced apoptosis. Moreover, p53 bound to p38 as revealed by immunoprecipitation with anti-p53 antibodies from UV-treated F9 cells. Thus, these results suggest that UV-stimulated p53 phosphorylation at serine 389 is mediated by the stress-responsive p38MAPK.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Proteínas Quinases Ativadas por Mitógeno , Piridinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/efeitos da radiação , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Humanos , Técnicas In Vitro , Masculino , Camundongos , Fosforilação , Serina/química , Neoplasias Testiculares/enzimologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/química , Raios Ultravioleta , Proteínas Quinases p38 Ativadas por Mitógeno
11.
J Biol Chem ; 273(25): 15794-803, 1998 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-9624179

RESUMO

The ribotoxic stress response, which is conserved between prokaryotes and eukaryotes, is a cellular reaction to cytotoxic interference with the function of the 3'-end of the large (23 S/28 S) ribosomal RNA. The 3'-end of the large rRNA is directly involved in the three sequential steps of translational elongation: the aminoacyl-tRNA binding, the peptidyl transfer, and the ribosomal translocation. In mammalian cells, the ribotoxic stress response involves activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase and the p38 mitogen-activated protein kinase and transcriptional induction of immediate early genes such as c-fos and c-jun. Active ribosomes are essential mediators of the ribotoxic stress response. We demonstrate here that the transcriptional response of mammalian cells to ultraviolet radiation (UV response) displays the characteristics of a ribotoxic stress response, inasmuch as (i) the activation of stress kinases and gene expression in response to UV requires the presence of active ribosomes at the moment of irradiation; (ii) UV irradiation inhibits protein synthesis; and (iii) irradiation of cells with UV causes specific damage to the 3'-end of the 28 S rRNA. In contrast, the activation of the stress kinases by hyperosmolarity, by the DNA-cross-linking agent diepoxybutane, or by growth factors and cytokines does not depend on the presence of active ribosomes. Our results identify UV as a potential ribotoxic stressor and support the notion that some of the cellular signaling cascades in response to UV might be generated in the ribosome, possibly triggered by damage to rRNA.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Fúngicas , MAP Quinase Quinase 4 , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA Ribossômico 28S/efeitos da radiação , Estresse Fisiológico/fisiopatologia , Raios Ultravioleta , Animais , Sequência de Bases , Endorribonucleases/metabolismo , Ativação Enzimática/efeitos da radiação , Fibroblastos/enzimologia , Fibroblastos/efeitos da radiação , Genes fos/genética , Genes jun/genética , Células HeLa , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Dados de Sequência Molecular , Conformação de Ácido Nucleico/efeitos da radiação , RNA Ribossômico 28S/metabolismo , Ratos , Transcrição Gênica
12.
J Biol Chem ; 273(6): 3528-34, 1998 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-9452478

RESUMO

The tumor promoter palytoxin has been found to activate the stress-activated protein kinase/c-Jun NH2-terminal kinase 1 (SAPK/JNK1), and it also potentiates, as demonstrated here, the p38/HOG1 mitogen-activated protein kinase and the upstream activator of SAPK/JNK1, SEK1/MKK4. In search of possible mechanisms for both the cytotoxicity and the activation of stress kinases by palytoxin, we found that palytoxin is a potent inhibitor of cellular protein synthesis. The inhibition of translation by palytoxin does not result from its direct binding to the translational apparatus. We have previously demonstrated that ribotoxic stressors (Iordanov, M. S., Pribnow, D., Magun, J. L., Dinh, T.-H., Pearson, J. A., Chen, S. L.-Y., and Magun, B. E. (1997) Mol. Cell. Biol. 17, 3373-3381) signal the activation of SAPK/JNK1 by binding to or covalently modifying 28 S rRNA in ribosomes that are active at the time of exposure to the stressor. Palytoxin acted as a ribotoxic stressor, inasmuch as it required actively translating ribosomes at the time of exposure to activate SAPK/JNK1. Palytoxin has been shown to augment ion fluxes by binding to the Na+/K+-ATPase in the plasma membrane of cells. To determine whether altered fluxes of either Na+ or K+ could be responsible for the effects of palytoxin on translation and on activation of SAPK/JNK1, cells were exposed to palytoxin in modified culture medium in which a major portion of the Na+ was replaced by either K+ or by choline+. The substitution of Na+ by K+ strongly inhibited the ability of palytoxin both to inhibit protein translation and to activate SAPK/JNK1, whereas the substitution of Na+ by choline+ did not. These results suggest that palytoxin-induced efflux of cellular K+ mimics ribotoxic stress by provoking both translational inhibition and activation of protein kinases associated with cellular defense against stress.


Assuntos
Acrilamidas/farmacologia , Potássio/metabolismo , Proteínas Quinases/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/efeitos dos fármacos , Animais , Linhagem Celular , Venenos de Cnidários , Ativação Enzimática , Transporte de Íons , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Quinases/genética , Ratos , Ribossomos/metabolismo
13.
Mol Cell Biol ; 17(6): 3373-81, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9154836

RESUMO

Inhibition of protein synthesis per se does not potentiate the stress-activated protein kinases (SAPKs; also known as cJun NH2-terminal kinases [JNKs]). The protein synthesis inhibitor anisomycin, however, is a potent activator of SAPKs/JNKs. The mechanism of this activation is unknown. We provide evidence that in order to activate SAPK/JNK1, anisomycin requires ribosomes that are translationally active at the time of contact with the drug, suggesting a ribosomal origin of the anisomycin-induced signaling to SAPK/JNK1. In support of this notion, we have found that aminohexose pyrimidine nucleoside antibiotics, which bind to the same region in the 28S rRNA that is the target site for anisomycin, are also potent activators of SAPK/JNK1. Binding of an antibiotic to the 28S rRNA interferes with the functioning of the molecule by altering the structural interactions of critical regions. We hypothesized, therefore, that such alterations in the 28S rRNA may act as recognition signals to activate SAPK/JNK1. To test this hypothesis, we made use of two ribotoxic enzymes, ricin A chain and alpha-sarcin, both of which catalyze sequence-specific RNA damage in the 28S rRNA. Consistent with our hypothesis, ricin A chain and alpha-sarcin were strong agonists of SAPK/JNK1 and of its activator SEK1/MKK4 and induced the expression of the immediate-early genes c-fos and c-jun. As in the case of anisomycin, ribosomes that were active at the time of exposure to ricin A chain or alpha-sarcin were able to initiate signal transduction from the damaged 28S rRNA to SAPK/JNK1 while inactive ribosomes were not.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Endorribonucleases/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno , Conformação de Ácido Nucleico , Peptidil Transferases/antagonistas & inibidores , Inibidores da Síntese de Proteínas/metabolismo , RNA Ribossômico 28S/metabolismo , Ribossomos/metabolismo , Ricina/metabolismo , Animais , Anisomicina/metabolismo , Antibacterianos/metabolismo , Sequência de Bases , Sítios de Ligação , Ativação Enzimática , Proteínas Quinases JNK Ativadas por Mitógeno , Dados de Sequência Molecular , Nucleosídeos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Ribossômico 28S/química , Ratos , Transdução de Sinais
14.
EMBO J ; 16(5): 1009-22, 1997 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-9118940

RESUMO

Changes in environmental conditions such as the addition of growth factors or irradiation of cells in culture first affect immediate response genes. We have shown previously that short wavelength UV irradiation (UVC) elicits massive activation of several growth factor receptor-dependent pathways. At the level of the immediate response gene c-fos, these pathways activate the transcription factor complex serum response factor (SRF)-p62TCF which mediates part of the UV-induced transcriptional response. These studies have, however, suggested that more that one pathway is required for full UV responsiveness of c-fos. Using appropriate promoter mutations and dominant-negative cAMP response element (CRE)-binding protein (CREB), we now find that UVC-induced transcriptional activation depends also on the CRE at position -60 of the c-fos promoter and on the functionality of a CREB. Upon UV irradiation, CREB and ATF-1 are phosphorylated at serines 133 and 63, respectively, preceded by and dependent on activation of p38/RK/HOG-1 and of a p38/RK/HOG-1-dependent p108 CREB kinase. Although p90RSK1 and MAPKAP kinase 2 are also activated by UV, p90RSK1 does not, at least not decisively, participate in this signalling pathway to CREB and ATF-1 as it is not p38/RK/HOG-1 dependent, and CREB is a poor substrate for MAPKAP kinase 2 in vitro. On the basis of resistance to the growth factor receptor inhibitor suramin and of several types of cross-refractoriness experiments, the UVC-induced CREB/ATF-1 phosphorylation represents an as yet unrecognized route of UVC-induced signal transduction, independent of suramin-inhibitable growth factor receptors and different from the Erk 1,2-p62TCF pathway.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA , Proteínas Quinases Ativadas por Mitógeno , Proteínas de Saccharomyces cerevisiae , Raios Ultravioleta , Fator 1 Ativador da Transcrição , Western Blotting , Colforsina/farmacologia , Ativação Enzimática/fisiologia , Fator de Crescimento Epidérmico/farmacologia , Imunofluorescência , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Fosfopeptídeos/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas , Transdução de Sinais/fisiologia , Suramina/farmacologia , Fatores de Transcrição/metabolismo , Ativação Transcricional
15.
J Photochem Photobiol B ; 37(1-2): 1-17, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9043093

RESUMO

Irradiation of cells with wavelength ultraviolet (UVA, B and C) induces the transcription of many genes. The program overlaps with that induced by oxidants and alkylating agents and has both protective and other functions. Genes transcribed in response to UV irradiation include genes encoding transcription factors, proteases and viral proteins. While the transcription factor encoding genes is initiated in minutes after UV irradiation (immediate response genes) and depends exclusively on performed proteins, the transcription of protease encoding occurs only many hours after UV irradiation. Transcription factors controlling the activity of immediate response genes are activated by protein kinases belonging to the group of proline directed protein kinases immediately after UV irradiation. Experimental evidence suggests that these kinases are activated in UV irradiated cells through pathways which are used by growth factors. In fact, the first cellular reaction detectable in UV irradiated cells is the phosphorylation of several growth factor receptors at tyrosine residues. This phosphorylation does not depend on UV induced DNA damage, but is due to an inhibition of the activity of tyrosine phosphatases. In contrast, for late cellular reactions to UV, an obligatory role of DNA damage in transcribed regions of the genome can be demonstrated. Thus, UV is absorbed by several target molecules relevant for cellular signaling, and it appears that numerous signal transduction pathways are stimulated. The combined action of these pathways establishes the genetic program that determines the fate of UV irradiated cells.


Assuntos
Transdução de Sinais/efeitos da radiação , Raios Ultravioleta , Animais , Células Cultivadas , Dano ao DNA , Modelos Moleculares , NF-kappa B/genética , Fenótipo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...