Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(3): 589-596.e5, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36693369

RESUMO

The Venus flytrap Dionaea muscipula estimates prey nutrient content by counting trigger hair contacts initiating action potentials (APs) and calcium waves traveling all over the trap.1,2,3 A first AP is associated with a subcritical rise in cytosolic calcium concentration, but when the second AP arrives in time, calcium levels pass the threshold required for fast trap closure. Consequently, memory function and decision-making are timed via a calcium clock.3,4 For higher numbers of APs elicited by the struggling prey, the Ca2+ clock connects to the networks governed by the touch hormone jasmonic acid (JA), which initiates slow, hermetic trap sealing and mining of the animal food stock.5 Two distinct phases of trap closure can be distinguished within Dionaea's hunting cycle: (1) very fast trap snapping requiring two APs and crossing of a critical cytosolic Ca2+ level and (2) JA-dependent slow trap sealing and prey processing induced by more than five APs. The Dionaea mutant DYSC is still able to fire touch-induced APs but does not snap close its traps and fails to enter the hunting cycle after prolonged mechanostimulation. Transcriptomic analyses revealed that upon trigger hair touch/AP stimulation, activation of calcium signaling is largely suppressed in DYSC traps. The observation that external JA application restored hunting cycle progression together with the DYSC phenotype and its transcriptional landscape indicates that DYSC cannot properly read, count, and decode touch/AP-induced calcium signals that are key in prey capture and processing.


Assuntos
Droseraceae , Discalculia , Animais , Potenciais de Ação , Cálcio
2.
Curr Biol ; 32(19): 4255-4263.e5, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087579

RESUMO

Since the 19th century, it has been known that the carnivorous Venus flytrap is electrically excitable. Nevertheless, the mechanism and the molecular entities of the flytrap action potential (AP) remain unknown. When entering the electrically excitable stage, the trap expressed a characteristic inventory of ion transporters, among which the increase in glutamate receptor GLR3.6 RNA was most pronounced. Trigger hair stimulation or glutamate application evoked an AP and a cytoplasmic Ca2+ transient that both propagated at the same speed from the site of induction along the entire trap lobe surface. A priming Ca2+ moiety entering the cytoplasm in the context of the AP was further potentiated by an organelle-localized calcium-induced calcium release (CICR)-like system prolonging the Ca2+ signal. While the Ca2+ transient persisted, SKOR K+ channels and AHA H+-ATPases repolarized the AP already. By counting the number of APs and long-lasting Ca2+ transients, the trap directs the different steps in the carnivorous plant's hunting cycle. VIDEO ABSTRACT.


Assuntos
Droseraceae , Potenciais de Ação , Adenosina Trifosfatases , Cálcio , Sinalização do Cálcio , Glutamatos , Proteínas de Membrana Transportadoras , RNA , Receptores de Glutamato
3.
Sci Rep ; 12(1): 2851, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181728

RESUMO

Plants do not have neurons but operate transmembrane ion channels and can get electrical excited by physical and chemical clues. Among them the Venus flytrap is characterized by its peculiar hapto-electric signaling. When insects collide with trigger hairs emerging the trap inner surface, the mechanical stimulus within the mechanosensory organ is translated into a calcium signal and an action potential (AP). Here we asked how the Ca2+ wave and AP is initiated in the trigger hair and how it is feed into systemic trap calcium-electrical networks. When Dionaea muscipula trigger hairs matures and develop hapto-electric excitability the mechanosensitive anion channel DmMSL10/FLYC1 and voltage dependent SKOR type Shaker K+ channel are expressed in the sheering stress sensitive podium. The podium of the trigger hair is interface to the flytrap's prey capture and processing networks. In the excitable state touch stimulation of the trigger hair evokes a rise in the podium Ca2+ first and before the calcium signal together with an action potential travel all over the trap surface. In search for podium ion channels and pumps mediating touch induced Ca2+ transients, we, in mature trigger hairs firing fast Ca2+ signals and APs, found OSCA1.7 and GLR3.6 type Ca2+ channels and ACA2/10 Ca2+ pumps specifically expressed in the podium. Like trigger hair stimulation, glutamate application to the trap directly evoked a propagating Ca2+ and electrical event. Given that anesthetics affect K+ channels and glutamate receptors in the animal system we exposed flytraps to an ether atmosphere. As result propagation of touch and glutamate induced Ca2+ and AP long-distance signaling got suppressed, while the trap completely recovered excitability when ether was replaced by fresh air. In line with ether targeting a calcium channel addressing a Ca2+ activated anion channel the AP amplitude declined before the electrical signal ceased completely. Ether in the mechanosensory organ did neither prevent the touch induction of a calcium signal nor this post stimulus decay. This finding indicates that ether prevents the touch activated, glr3.6 expressing base of the trigger hair to excite the capture organ.


Assuntos
Cálcio/química , Droseraceae/fisiologia , Eletricidade , Cabelo/fisiologia , Potenciais de Ação/genética , Anestésicos/farmacologia , Cálcio/metabolismo , Canais de Cálcio/genética , Droseraceae/efeitos dos fármacos , Éter/farmacologia , Oxilipinas/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Transdução de Sinais/genética , Tato/fisiologia , Percepção do Tato/genética , Percepção do Tato/fisiologia
4.
PLoS Biol ; 18(12): e3000964, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33296375

RESUMO

The carnivorous plant Dionaea muscipula harbors multicellular trigger hairs designed to sense mechanical stimuli upon contact with animal prey. At the base of the trigger hair, mechanosensation is transduced into an all-or-nothing action potential (AP) that spreads all over the trap, ultimately leading to trap closure and prey capture. To reveal the molecular basis for the unique functional repertoire of this mechanoresponsive plant structure, we determined the transcriptome of D. muscipula's trigger hair. Among the genes that were found to be highly specific to the trigger hair, the Shaker-type channel KDM1 was electrophysiologically characterized as a hyperpolarization- and acid-activated K+-selective channel, thus allowing the reuptake of K+ ions into the trigger hair's sensory cells during the hyperpolarization phase of the AP. During trap development, the increased electrical excitability of the trigger hair is associated with the transcriptional induction of KDM1. Conversely, when KDM1 is blocked by Cs+ in adult traps, the initiation of APs in response to trigger hair deflection is reduced, and trap closure is suppressed. KDM1 thus plays a dominant role in K+ homeostasis in the context of AP and turgor formation underlying the mechanosensation of trigger hair cells and thus D. muscipula's hapto-electric signaling.


Assuntos
Droseraceae/genética , Droseraceae/metabolismo , Canais de Potássio/metabolismo , Potenciais de Ação/fisiologia , Transporte Biológico , Fenômenos Eletrofisiológicos , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Íons , Mecanorreceptores/metabolismo , Mecanorreceptores/fisiologia , Folhas de Planta/fisiologia , Potássio/metabolismo , Canais de Potássio/fisiologia , Transdução de Sinais , Transcriptoma/genética
5.
Curr Biol ; 30(12): 2312-2320.e5, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32413308

RESUMO

Most plants grow and develop by taking up nutrients from the soil while continuously under threat from foraging animals. Carnivorous plants have turned the tables by capturing and consuming nutrient-rich animal prey, enabling them to thrive in nutrient-poor soil. To better understand the evolution of botanical carnivory, we compared the draft genome of the Venus flytrap (Dionaea muscipula) with that of its aquatic sister, the waterwheel plant Aldrovanda vesiculosa, and the sundew Drosera spatulata. We identified an early whole-genome duplication in the family as source for carnivory-associated genes. Recruitment of genes to the trap from the root especially was a major mechanism in the evolution of carnivory, supported by family-specific duplications. Still, these genomes belong to the gene poorest land plants sequenced thus far, suggesting reduction of selective pressure on different processes, including non-carnivorous nutrient acquisition. Our results show how non-carnivorous plants evolved into the most skillful green hunters on the planet.


Assuntos
Evolução Biológica , Planta Carnívora/genética , Droseraceae/genética , Genoma de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...