Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 9(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899350

RESUMO

The aim of this study was to develop an effective integrated cultivation system for Haematococcus pluvialis as a source of bioactive compounds such as astaxanthin, lutein, proteins, and fatty acids (FAs). The Chlorophyta H. pluvialis was cultivated in a vertical bubble column photobioreactor (VBC-PBR) under batch mode, allowing switching from green to red phase for astaxanthin induction. The combined effect of light intensity and nutrients on bioactive compound formation was investigated. Results showed that growth under lower nutrients availability and light intensity led to a higher concentration of biomass. Growth under high light intensity with an appropriate concentration of nitrate, sulfate, phosphate and magnesium led to ~85% and ~58% higher production of total carotenoids and fatty acids, respectively. Under high stress conditions, ~90% nitrate and phosphate consumption were observed.

2.
Front Plant Sci ; 11: 415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373140

RESUMO

The main purpose of this study is to investigate the effects of operative parameters and bioprocess strategies on the photo-autotrophic cultivation of the microalgae Scenedesmus almeriensis for lutein production. S. almeriensis was cultivated in a vertical bubble column photobioreactor (VBC-PBR) in batch mode and the bioactive compounds were extracted by accelerated solvent extraction with ethanol at 67°C and 10 MPa. The cultivation with a volume fraction of CO2 in the range 0-3.0%v/v showed that the highest biomass and lutein concentrations - 3.7 g/L and 5.71 mg/g, respectively - were measured at the highest CO2 concentration and using fresh growth medium. Recycling the cultivation medium from harvested microalgae resulted in decreased biomass and lutein content. The nutrient chemical composition analysis showed the highest consumption rates for nitrogen and phosphorus, with values higher than 80%, while sulfate and chloride were less consumed.

3.
Antioxidants (Basel) ; 9(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414186

RESUMO

Haematococcus pluvialis microalgae is a promising source of astaxanthin, an excellent antioxidant carotenoid. H. pluvialis, as well as other species, could find more extensive applications as healthy food for a variegated carotenoids composition in addition to astaxanthin. Official method has not currently been used for this purpose. The objective of this work was to propose a method to characterize carotenoids in H. pluvialis after the comparison between spectrophotometric and liquid chromatography analysis. In addition, in order to improve the use of astaxanthin in the food industry, thermal stability was investigated. In this context, the effect of temperature at 40-80 °C, over a 16 h storage period was tested on astaxanthin produced by H. pluvialis. A further test was carried out at room temperature (20 °C) for seven days. A decrease in the astaxanthin concentration was observed at all tested temperatures with a decrease >50% of all-trans isomer at 80 °C after 16 h and an increase of 9-cis and 13-cis isomers. In conclusion, the obtained results showed the importance of evaluating the degradation effect of temperature on astaxanthin used as a food additive for a future greater enhancement of this bioproduct in the food field.

4.
Molecules ; 24(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261888

RESUMO

In this article, microalgae Nannochloropsis sp. was used for fatty acid (FA) extraction, using a supercritical fluid-carbon dioxide (SF-CO2) extraction method. This study investigated the influence of different pre-treatment conditions by varying the grinding speed (200-600 rpm), pre-treatment time (2.5-10 min), and mixing ratio of diatomaceous earth (DE) and Nannochloropsis sp. biomass (0.5-2.0 DE/biomass) on FAs extraction. In addition, the effect of different operating conditions, such as pressure (100-550 bar), temperature (50-75 °C), and CO2 flow rate (7.24 and 14.48 g/min) on eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) recovery, was analyzed. Experimental data evidenced that, keeping constant the extraction conditions, the pre-treatment step enhanced the FAs extraction yield up to 3.4 fold, thereby the maximum extracted amount of FAs (61.19 mg/g) was attained with the pre-treatment with a ratio of DE/biomass of 1 at 600 rpm for 5 min. Moreover, by increasing both SF-CO2 pressure and temperature, the selectivity towards EPA was enhanced, while intermediate pressure and lower pressure promoted DHA recovery. The highest amount of extracted EPA, i.e., 5.69 mg/g, corresponding to 15.59%, was obtained at 75 °C and 550 bar with a CO2 flow rate of 14.48 g/min, while the maximum amount of extracted DHA, i.e., ~0.12 mg/g, equal to 79.63%, was registered at 50 °C and 400 bar with a CO2 flow rate of 14.48 g/min. Moreover, the increased CO2 flow rate from 7.24 to 14.48 g/min enhanced both EPA and DHA recovery.


Assuntos
Dióxido de Carbono/química , Ácidos Graxos Ômega-3/isolamento & purificação , Estramenópilas/química , Biomassa , Cromatografia com Fluido Supercrítico , Ácidos Docosa-Hexaenoicos/isolamento & purificação , Ácido Eicosapentaenoico/isolamento & purificação , Temperatura
5.
Molecules ; 24(7)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987275

RESUMO

Lutein has several benefits for human health, playing an important role in the prevention of age-related macular degeneration (AMD), cataracts, amelioration of the first stages of atherosclerosis, and some types of cancer. In this work, the Scenedesmus almeriensis microalga was used as a natural source for the supercritical fluid (SF) extraction of lutein. For this purpose, the optimization of the main parameters affecting the extraction, such as biomass pre-treatment, temperature, pressure, and carbon dioxide (CO2) flow rate, was performed. In the first stage, the effect of mechanical pre-treatment (diatomaceous earth (DE) and biomass mixing in the range 0.25-1 DE/biomass; grinding speed varying between 0 and 600 rpm, and pre-treatment time changing from 2.5 to 10 min), was evaluated on lutein extraction efficiency. In the second stage, the influence of SF-CO2 extraction parameters such as pressure (25-55 MPa), temperature (50 and 65 °C), and CO2 flow rate (7.24 and 14.48 g/min) on lutein recovery and purity was investigated. The results demonstrated that by increasing temperature, pressure, and CO2 flow rate lutein recovery and purity were improved. The maximum lutein recovery (~98%) with purity of ~34% was achieved operating at 65 °C and 55 MPa with a CO2 flow rate of 14.48 g/min. Therefore, optimum conditions could be useful in food industries for lutein supplementation in food products.


Assuntos
Extração Líquido-Líquido , Luteína/isolamento & purificação , Scenedesmus/química , Biomassa , Carotenoides/química , Suplementos Nutricionais , Ácidos Graxos , Aditivos Alimentares/análise , Aditivos Alimentares/química , Lipídeos/química , Extração Líquido-Líquido/métodos , Luteína/química , Pressão , Temperatura
6.
Mar Drugs ; 17(2)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813384

RESUMO

This research shows that carbon dioxide supercritical fluid (CO2-SF) is an emerging technology for the extraction of high interest compounds for applications in the manufacturing of pharmaceuticals, nutraceuticals, and cosmetics from microalgae. The purpose of this study is to recover fatty acids (FAs) and, more precisely, eicosapentaenoic acid (EPA) from Nannochloropsis gaditana biomass by CO2-SF extraction. In the paper, the effect of mechanical pre-treatment was evaluated with the aim of increasing FAs recovery. Extraction was performed at a pressure range of 250⁻550 bars and a CO2 flow rate of 7.24 and 14.48 g/min, while temperature was fixed at 50 or 65 °C. The effect of these parameters on the extraction yield was assessed at each extraction cycle, 20 min each, for a total extraction time of 100 min. Furthermore, the effect of biomass loading on EPA recovery was evaluated. The highest EPA extraction yield, i.e., 11.50 mg/g, corresponding to 27.4% EPA recovery, was obtained at 65 °C and 250 bars with a CO2 flow rate of 7.24 g/min and 1.0 g biomass loading. The increased CO2 flow rate from 7.24 to 14.48 g/min enhanced the cumulative EPA recovery at 250 bars. The purity of EPA could be improved by biomass loading of 2.01 g, even if recovery was reduced.


Assuntos
Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Ácido Eicosapentaenoico/isolamento & purificação , Microalgas/química , Estramenópilas/química , Ácidos Graxos/isolamento & purificação , Pressão , Temperatura
7.
Mar Drugs ; 16(11)2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30400304

RESUMO

Astaxanthin and lutein, antioxidants used in nutraceutics and cosmetics, can be extracted from several microalgal species. In this work, investigations on astaxanthin and lutein extraction from Haematococcus pluvialis (H. pluvialis) in the red phase were carried out by means of the supercritical fluid extraction (SFE) technique, in which CO2 supercritical fluid was used as the extracting solvent with ethanol as the co-solvent. The experimental activity was performed using a bench-scale reactor in semi-batch configuration with varying extraction times (20, 40, 60, and 80 min), temperatures (50, 65, and 80 °C) and pressures (100, 400, and 550 bar). Moreover, the performance of CO2 SFE with ethanol was compared to that without ethanol. The results show that the highest astaxanthin and lutein recoveries were found at 65 °C and 550 bar, with ~18.5 mg/g dry weight (~92%) astaxanthin and ~7.15 mg/g dry weight (~93%) lutein. The highest astaxanthin purity and the highest lutein purity were found at 80 °C and 400 bar, and at 65 °C and 550 bar, respectively.


Assuntos
Antioxidantes/isolamento & purificação , Clorofíceas/química , Cromatografia com Fluido Supercrítico/métodos , Luteína/isolamento & purificação , Microalgas/química , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/instrumentação , Etanol/química , Solventes/química , Xantofilas/isolamento & purificação
8.
Artigo em Inglês | MEDLINE | ID: mdl-30388801

RESUMO

The exploration of new food sources and natural products is the result of the increase in world population as well as the need for a healthier diet; in this context, microalgae are undoubtedly an interesting solution. With the intent to enhance their value in new commercial applications, this paper aims to characterize microalgae that have already been recognized as safe or authorized as additives for humans and animals (Chlorella vulgaris, Arthrospira platensis, Haematococcus pluvialis, Dunaliella salina) as well as those that have not yet been marketed (Scenedesmus almeriensis and Nannocholoropsis sp.). In this scope, the content of proteins, carbohydrates, lipids, total dietary fiber, humidity, ash, and carotenoids has been measured via standard methods. In addition, individual carotenoids (beta-carotene, astaxanthin, and lutein) as well as individual saturated, monounsaturated, and polyunsaturated fatty acids have been identified and quantified chromatographically. The results confirm the prerogative of some species to produce certain products such as carotenoids, polyunsaturated fatty acids, and proteins, but also show how their cellular content is rich and diverse. H. pluvialis green and red phases, and Nannochloropsis sp., in addition to producing astaxanthin and omega-3, contain about 25⁻33% w/w proteins on a dry basis. D. salina is rich in beta-carotene (3.45% w/w on a dry basis), S. Almeriensis is a source of lutein (0.30% w/w on a dry basis), and the C. vulgaris species is a protein-based microalgae (45% w/w on a dry basis). All, however, can also produce important fatty acids such as palmitic acid, γ-linolenic acid, and oleic acid. Considering their varied composition, these microalgae can find applications in multiple sectors. This is true for microalgae already on the market as well as for promising new sources of bioproducts such as S. almeriensis and Nannochloropsis sp.


Assuntos
Ração Animal/análise , Produtos Biológicos/química , Suplementos Nutricionais/análise , Aditivos Alimentares/química , Microalgas/química , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA