Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Neuroscience ; 289: 207-13, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25573434

RESUMO

Nuclear hormone receptor coregulator-interacting factor 1 (NIF-1) is a zinc finger nuclear protein that was initially identified to enhance nuclear hormone receptor transcription via its interaction with nuclear hormone receptor coregulator (NRC). NIF-1 may regulate gene transcription either by modulating general transcriptional machinery or remodeling chromatin structure through interactions with specific protein partners. We previously reported that the cytoplasmic/nuclear localization of NIF-1 is regulated by the neuronal Cdk5 activator p35, suggesting potential neuronal functions for NIF-1. The present study reveals that NIF-1 plays critical roles in regulating neuronal morphogenesis at early stages. NIF-1 was prominently expressed in the nuclei of developing rat cortical neurons. Knockdown of NIF-1 expression attenuated both neurite outgrowth in cultured cortical neurons and retinoic acid (RA)-treated Neuro-2a neuroblastoma cells. Furthermore, activity-induced Ca(2+) influx, which is critical for neuronal morphogenesis, stimulated the nuclear localization of NIF-1 in cortical neurons. Suppression of NIF-1 expression reduced the up-regulation of neuronal activity-dependent gene transcription. These findings collectively suggest that NIF-1 directs neuronal morphogenesis during early developmental stages through modulating activity-dependent gene transcription.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuritos/fisiologia , Proteínas Nucleares/metabolismo , Animais , Cálcio/metabolismo , Crescimento Celular , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Fármacos do Sistema Nervoso Central/farmacologia , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Proteínas de Ligação a DNA , Camundongos , Neuritos/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Ratos , Fatores de Transcrição , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Tretinoína/farmacologia
2.
Cell Death Differ ; 19(2): 257-66, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21701498

RESUMO

The role of the serine protease HtrA2 in neuroprotection was initially identified by the demonstration of neurodegeneration in mice lacking HtrA2 expression or function, and the interesting finding that mutations adjacent to two putative phosphorylation sites (S142 and S400) have been found in Parkinson's disease patients. However, the mechanism of this neuroprotection and the signalling pathways associated with it remain mostly unknown. Here we report that cyclin-dependent kinase-5 (Cdk5), a kinase implicated in the pathogenesis of several neurodegenerative diseases, is responsible for phosphorylating HtrA2 at S400. HtrA2 and Cdk5 interact in human and mouse cell lines and brain, and Cdk5 phosphorylates S400 on HtrA2 in a p38-dependent manner. Phosphorylation of HtrA2 at S400 is involved in maintaining mitochondrial membrane potential under stress conditions and is important for mitochondrial function, conferring cells protection against cellular stress.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Serina Endopeptidases/metabolismo , Animais , Citosol/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Camundongos , Proteínas Mitocondriais/química , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Transporte Proteico , Serina Endopeptidases/química
3.
Neuroscience ; 180: 353-9, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21335063

RESUMO

Pctaire1, a Cdk-related protein kinase, is prominently expressed in terminally differentiated tissues, including the brain and the testis. We have previously shown that Pctaire1 regulates neurotransmitter release through phosphorylation of NSF, and its kinase activity is regulated by the Cdk5-dependent phosphorylation at Serine-95 (Ser95). Nonetheless, the functional roles of Pctaire1 in neurons during development remained poorly understood. In this study, we found that Pctaire1 is expressed along neurites and is concentrated at the growth cones of early differentiating hippocampal neurons. Upon maturation of these neurons, Pctiare1 is expressed as puncta and co-localized with synaptic marker in dendrites. Phosphorylation of Pctaire1 at Ser95 increases upon neuronal differentiation, concurrent with the elevation in Cdk5 activity. Knockdown of Pctaire1 abolishes dendrite development, and more importantly, expression of Ser95 phosphorylation-deficient mutant of Pctaire1 also reduces dendrite complexity, suggesting that Cdk5 regulates Pctaire1 functions in differentiating neurons. Together, our findings demonstrate that Cdk5-dependent phosphorylation of Pctaire1 at Ser95 plays an important role in dendrite development.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Dendritos/metabolismo , Hipocampo/embriologia , Neurogênese/fisiologia , Animais , Western Blotting , Diferenciação Celular , Linhagem Celular , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Fosforilação
4.
Neurosignals ; 18(1): 32-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20389133

RESUMO

Rat pheochromocytoma (PC12) cells characteristically undergo differentiation when cultured with nerve growth factor (NGF). Here we show that NGF dramatically increased the adenylyl cyclase-activating property of forskolin in PC12 cells. This effect of NGF was well maintained even when NGF was removed after 4 days, even though the morphological features of neuronal differentiation were rapidly lost on removal of NGF. The enhanced cAMP production in response to forskolin could be due to a synergistic interaction between forskolin and endogenously released agonists acting on G(s)-coupled receptors. However, responses to forskolin were not attenuated by antagonists of adenosine A2 receptors or pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, suggesting that adenosine and PACAP were not involved. Adenylyl cyclases 3, 6 and 9 were the predominant isoforms expressed in PC12 cells, but we found no evidence for NGF-induced changes in expression levels of any of the 9 adenylyl cyclase isoforms, nor in the expression of Gα(s). These findings highlight that NGF has a subtle influence on adenylyl cyclase activity in PC12 cells which may influence more than the neurite extension process classically associated with neuronal differentiation.


Assuntos
Adenilil Ciclases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Análise de Variância , Animais , Contagem de Células/métodos , Colforsina/farmacologia , AMP Cíclico/metabolismo , Interações Medicamentosas , Células PC12/efeitos dos fármacos , Células PC12/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Isoformas de Proteínas/metabolismo , Ratos , Fatores de Tempo , Trítio/metabolismo
5.
Neuroscience ; 168(3): 613-23, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20398740

RESUMO

It has previously been reported that the avian H5N1 type of influenza A virus can be detected in neurons and astrocytes of human brains in autopsy cases. However, the underlying neuropathogenicity remains unexplored. In this study, we used differentiated human astrocytic and neuronal cell lines as models to examine the effect of H5N1 influenza A viral infection on the viral growth kinetics and immune responses of the infected cells. We found that the influenza virus receptors, sialic acid-alpha2,3-galactose and sialic acid-alpha2,6-galactose, were expressed on differentiated human astrocytic and neuronal cells. Both types of cells could be infected with H5N1 influenza A viruses, but progeny viruses were only produced from infected astrocytic cells but not neuronal cells. Moreover, increased expression of interleukin (IL)-6 and/or tumor necrosis factor alpha (TNF-alpha) mRNA was detected in both astrocytic and neuronal cells at 6 and 24 h post-infection. To examine the biological consequences of such enhanced cytokine expression, differentiated astrocytic and neuronal cells were directly treated with these two cytokines. TNF-alpha treatment induced apoptosis, as well as proinflammatory cytokine, chemokine and inflammatory responses in differentiated astrocytic and neuronal cells. Taken together, our findings reveal that avian influenza H5N1 viruses can infect human astrocytic and neuronal cells, resulting in the induction of direct cellular damage and proinflammatory cytokine cascades. Our observations suggest that avian influenza H5N1 infection can trigger profound CNS injury, which may play an important role in the influenza viral pathogenesis.


Assuntos
Astrócitos/virologia , Citocinas/metabolismo , Virus da Influenza A Subtipo H5N1/fisiologia , Neurônios/virologia , Apoptose , Astrócitos/citologia , Astrócitos/imunologia , Diferenciação Celular , Linhagem Celular , Quimiocina CCL2/biossíntese , Ciclo-Oxigenase 2/biossíntese , Efeito Citopatogênico Viral , Galactose/análogos & derivados , Galactose/biossíntese , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Interleucina-6/biossíntese , Interleucina-6/genética , Neurônios/citologia , Neurônios/imunologia , RNA Mensageiro/biossíntese , Receptores Virais/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
6.
Br J Cancer ; 101(4): 691-8, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19672268

RESUMO

BACKGROUND: Retinoic acid-regulated nuclear matrix-associated protein (RAMP) is a WD40 repeat-containing protein that is involved in various biological functions, but little is known about its role in human cancer. This study aims to delineate the oncogenic role of RAMP in gastric carcinogenesis. METHODS: RAMP expression was examined by real-time quantitative RT-PCR, immunohistochemistry and western blotting. Inhibition of RAMP expression was performed by siRNA-mediated knockdown. The functional effects of RAMP on cell kinetics were measured by cell viability assay, colony formation assay and flow cytometry. Cell lines stably expressing RAMP were established to investigate the oncogenic effects of RAMP in vitro. RESULTS: Ramp was readily expressed in all seven gastric cancer cell lines and was significantly increased in human gastric cancer tissues when compared with their adjacent non-cancerous tissues (P<0.001). In keeping with this, expression of RAMP protein was higher in gastric cancer tissues compared with their adjacent non-cancerous tissues, whereas moderate protein expression were noted in intestinal metaplasia. Knockdown of RAMP in gastric cancer cells significantly reduced cell proliferation (P<0.01) and soft agar colony formation (P<0.001), but induced apoptosis and G(2)/M arrest. In additional, knockdown RAMP induced cell apoptosis is dependent on functional accumulation of p53 and p21 and induction of cleaved caspases-9, caspases-3 and PARP. Strikingly, overexpression of RAMP promoted anchorage-independent cell growth in soft agar. CONCLUSION: Our findings demonstrate that RAMP plays an oncogenic role in gastric carcinogenesis. Inhibition of RAMP may be a promising approach for gastric cancer therapy.


Assuntos
Biomarcadores Tumorais/análise , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Apoptose/fisiologia , Western Blotting , Linhagem Celular Tumoral , Citometria de Fluxo , Expressão Gênica , Humanos , Imuno-Histoquímica , RNA Mensageiro/análise , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Ubiquitina-Proteína Ligases
7.
Neuroscience ; 146(2): 594-603, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17368953

RESUMO

Tight regulation of gene transcription is critical in muscle development as well as during the formation and maintenance of the neuromuscular junction (NMJ). We previously demonstrated that the transcription of G protein beta1 (Gbeta1) is enhanced by treatment of cultured myotubes with neuregulin (NRG), a trophic factor that plays an important role in neural development. In the current study, we report that the transcript levels of Gbeta1 and Gbeta2 subunits in skeletal muscle are up-regulated following sciatic nerve injury or blockade of nerve activity. These observations prompted us to explore the possibility that G protein subunits regulate NRG-mediated signaling and gene transcription. We showed that overexpression of Gbeta1 or Gbeta2 in COS7 cells attenuates NRG-induced extracellular signal-regulated kinase (ERK) 1/2 activation, whereas suppression of Gbeta2 expression in C2C12 myotubes enhances NRG-mediated ERK1/2 activation and c-fos transcription. These results suggest that expression of Gbeta protein negatively regulates NRG-stimulated gene transcription in cultured myotubes. Taken together, our observations provide evidence that specific heterotrimeric G proteins regulate NRG-mediated signaling and gene transcription during rat muscle development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células Musculares/metabolismo , Músculo Esquelético/citologia , Neurregulinas/fisiologia , Neuropatia Ciática/fisiopatologia , Transdução de Sinais/fisiologia , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Chlorocebus aethiops , Embrião de Mamíferos , Subunidades beta da Proteína de Ligação ao GTP , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Musculares/efeitos dos fármacos , Denervação Muscular/métodos , Neurregulinas/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Tetrodotoxina/farmacologia , Fatores de Tempo , Transfecção/métodos
8.
Neuroscience ; 137(4): 1347-58, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16343781

RESUMO

The GABAB receptors are generally considered to be classical Gi-coupled receptors that lack the ability to mobilize intracellular Ca2+ without the aid of promiscuous G proteins. Here, we report the ability of GABAB receptors to promote calcium influx into primary cultures of rat cortical neurons and transfected Chinese hamster ovary cells. Chinese hamster ovary cells were transfected with GABAB1(a) or GABAB1(b) subunits along with GABAB2 subunits. In experiments using the fluorometric imaging plate reader platform, GABA and selective agonists promoted increases in intracellular Ca2+ levels in transfected Chinese hamster ovary cells and cortical neurons with the expected order of potency. These effects were fully antagonized by selective GABAB receptor antagonists. To investigate the intracellular pathways responsible for mediating these effects we employed several pharmacological inhibitors. Pertussis toxin abolished GABAB mediated Ca2+ increases, as did the phospholipase Cbeta inhibitor U73122. Inhibitor 2-aminethoxydiphenyl borane acts as an antagonist at inositol 1,4,5-trisphosphate receptors and at store-operated channels. In all cell types, 2-aminethoxydiphenyl borane prevented Ca2+ mobilization. The selective store-operated channel inhibitor 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride prevented increases in intracellular Ca2+ levels as did performing the assays in Ca2+ free buffers. In conclusion, GABAB receptors expressed in Chinese hamster ovary cells and endogenously expressed in rat cortical neurons promote Ca2+ entry into the cell via the activation of store-operated channels, using a mechanism that is dependent on Gi/o heterotrimeric proteins and phospholipase Cbeta. These findings suggest that the neuronal effects mediated by GABAB receptors may, in part, rely on the receptor's ability to promote Ca2+ influx.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Receptores de GABA-B/fisiologia , Animais , Transporte Biológico , Células CHO , Cricetinae , Dimerização , Modelos Neurológicos , Ratos , Proteínas Recombinantes/metabolismo , Transfecção
9.
Brain Res Mol Brain Res ; 96(1-2): 21-9, 2001 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11731005

RESUMO

Muscle specific kinase (MuSK) mediates agrin-induced acetylcholine receptor (AChR) aggregation on muscle membrane at the neuromuscular junction (NMJ). To examine whether MuSK enhances NMJ formation during embryonic development in vivo, the level of expression of MuSK was manipulated in Xenopus embryos and the functional consequence at the NMJ was assessed. We found that overexpression of MuSK enhanced the formation of NMJ by increasing the aggregation of AChRs at innervated regions in developing embryos. The area of AChR aggregation increased by approximately 2-fold in MuSK injected embryos during the critical stages of NMJ formation. Interestingly, overexpression of MuSK in Xenopus embryos was found to induce the level of AChR transcript. Deletion of the Kringle domain in the MuSK construct did not attenuate the observed induction of AChR transcription and aggregation. Taken together, our findings provide the first demonstration that increased level of MuSK expression in vivo significantly elevate the aggregation and transcription of AChR at the NMJ in developing Xenopus embryos.


Assuntos
Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Ativação Transcricional/fisiologia , Animais , Embrião não Mamífero/metabolismo , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Proteínas de Fluorescência Verde , Indicadores e Reagentes/metabolismo , Proteínas Luminescentes/genética , Masculino , Mutagênese/fisiologia , Junção Neuromuscular/enzimologia , Fosforilação , Sinapses/enzimologia , Transfecção , Tirosina/metabolismo , Xenopus laevis
10.
J Neurosci ; 21(23): 9224-34, 2001 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11717356

RESUMO

In vertebrate neuromuscular junctions, ATP is stored at the motor nerve terminals and is co-released with acetylcholine during neural stimulation. Here, we provide several lines of evidence that the synaptic ATP can act as a synapse-organizing factor to induce the expression of acetylcholinesterase (AChE) and acetylcholine receptor (AChR) in muscles, mediated by a metabotropic ATP receptor subtype, the P2Y(1) receptor. The activation of the P2Y(1) receptor by adenine nucleotides stimulated the accumulation of inositol phosphates and intracellular Ca(2+) mobilization in cultured chick myotubes. P2Y(1) receptor mRNA in chicken muscle is very abundant before hatching and again increases in the adult. The P2Y(1) receptor protein is shown to be restricted to the neuromuscular junctions and colocalized with AChRs in adult muscle (chicken, Xenopus, and rat) but not in the chick embryo. In chicks after hatching, this P2Y(1) localization develops over approximately 3 weeks. Denervation or crush of the motor nerve (in chicken or rat) caused up to 90% decrease in the muscle P2Y(1) transcript, which was restored on regeneration, whereas the AChR mRNA greatly increased. Last, mRNAs encoding the AChE catalytic subunit and the AChR alpha-subunit were induced when the P2Y(1) receptors were activated by specific agonists or by overexpression of P2Y(1) receptors in cultured myotubes; those agonists likewise induced the activity in the myotubes of promoter-reporter gene constructs for those subunits, actions that were blocked by a P2Y(1)-specific antagonist. These results provide evidence for a novel function of ATP in regulating the gene expression of those two postsynaptic effectors.


Assuntos
Acetilcolinesterase/metabolismo , Músculo Esquelético/metabolismo , Receptores Colinérgicos/metabolismo , Receptores Purinérgicos P2/biossíntese , Nucleotídeos de Adenina/farmacologia , Trifosfato de Adenosina/metabolismo , Envelhecimento/metabolismo , Animais , Células COS , Cálcio/metabolismo , Células Cultivadas , Embrião de Galinha , Galinhas , Fosfatos de Inositol/metabolismo , Neurônios Motores/fisiologia , Músculo Esquelético/citologia , Compressão Nervosa , Regeneração Nervosa/fisiologia , Junção Neuromuscular/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptores Colinérgicos/genética , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y1 , Medula Espinal/metabolismo , Transfecção , Xenopus
11.
Fresenius J Anal Chem ; 371(2): 190-4, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11678190

RESUMO

Over the last 50 years or so Traditional Chinese medicine (TCM) has been subject to intensive basic and clinical research. Although the effectiveness and remarkable safety of TCM have been documented after controlled clinical studies, there are several herbal and animal parts that are toxic or difficult to identify. DNA polymorphism-based assays have recently been developed for the identification of herbal medicines. In this approach, small amounts of DNA are amplified by the polymerase chain reaction and the reactions products are analyzed by gel electrophoresis, sequencing, or hybridization with species-specific probes. With the DNA based identification of TCM materials as an example, chip-based analytical micro devices were developed with the goal of fabricating an integrated device that will enable sample preparation, amplification, and analysis on a single microchip-based device ("lab-on-a-chip"). The application of a silicon-based polymerase chain reaction microreactor and a DNA microarray for the DNA sequence-based identification of toxic medicinal plants is reported here.


Assuntos
Medicina Tradicional Chinesa , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Plantas Medicinais/genética , DNA de Plantas/análise , Desenho de Equipamento , Humanos , Microquímica , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Plantas Medicinais/classificação , Reação em Cadeia da Polimerase/métodos , Silício
12.
Phytother Res ; 15(6): 487-92, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11536376

RESUMO

Bupleurum & Peony Formula (Jia Wei Xiao Yao San) is a herbal formula which possesses a clinical history for the treatment of menopausal syndrome and menstrual irregularity. The present investigation reports the ability to monitor the formula's phytoestrogen content that will allow for the implementation of a standardization protocol that is based on a quantifiable biological response. Utilizing an oestrogen-sensitive chimeric receptor/reporter gene element which has been stably transfected into HeLa cells, the botanical formula was shown to induce the expression of the reporter gene, luciferase, in a dose dependent manner. Pretreatment of the HeLa cells with the botanical formula produced a 5-fold increase in bioluminescence compared with the control. Additionally, our studies showed that the response of the cells, when challenged by the botanical formula, was oestrogen specific. Pretreatment of the cells with tamoxifen effectively blocked the activation of the chimeric oestrogen receptor by the botanical formula. The cell line provides a sensitive assay that can easily detect the presence of phytoestrogens in complex botanical formulas.


Assuntos
Bupleurum/química , Medicamentos de Ervas Chinesas/química , Estrogênios não Esteroides/isolamento & purificação , Isoflavonas , Menopausa/efeitos dos fármacos , Receptores de Estrogênio/genética , Adjuvantes Imunológicos , Medicamentos de Ervas Chinesas/farmacologia , Estradiol/farmacologia , Genes Reporter , Células HeLa , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Medicina Tradicional Chinesa , Fitoestrógenos , Fitoterapia , Extratos Vegetais/química , Preparações de Plantas , Receptores de Estrogênio/metabolismo , Sensibilidade e Especificidade , Tamoxifeno/farmacologia , Transfecção
13.
Mol Cell Neurosci ; 17(6): 1034-47, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11414792

RESUMO

The participation of ephrins and Eph receptors in guiding motor axons during muscle innervation has been well documented, but little is known about their expression and functional significance in muscle at later developmental stages. Our present study investigates the expression and localization of Eph receptors and ephrins in skeletal muscle. Prominent expression of EphA4, EphA7, and ephrin-A ligands was detected in muscle during embryonic development. More importantly, both EphA4 and EphA7, as well as ephrin-A2, were localized at the neuromuscular junction (NMJ) of adult muscle. Despite their relative abundance, they were not localized at the synapses during embryonic stages. The concentration of EphA4, EphA7, and ephrin-A2 at the NMJ was observed at postnatal stages and the synaptic localization became prominent at later developmental stages. In addition, expression of Eph receptors was increased by neuregulin and after nerve injury. Furthermore, we demonstrated that overexpression of EphA4 led to tyrosine phosphorylation of the actin-binding protein cortactin and that EphA4 was coimmunoprecipitated with cortactin in muscle. Taken together, our findings indicate that EphA4 is associated with the actin cytoskeleton. Since actin cytoskeleton is critical to the formation and stability of NMJ, the present findings raise the intriguing possibility that Eph receptors may have a novel role in NMJ formation and/or maintenance.


Assuntos
Proteínas Fetais/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/embriologia , Músculo Esquelético/inervação , Junção Neuromuscular/embriologia , Receptores Proteína Tirosina Quinases/genética , Envelhecimento/genética , Animais , Células COS , Cortactina , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imuno-Histoquímica , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/citologia , Proteínas do Tecido Nervoso/metabolismo , Neurregulinas/farmacologia , Junção Neuromuscular/citologia , Junção Neuromuscular/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptores Proteína Tirosina Quinases/metabolismo , Receptor EphA2 , Receptor EphA4 , Receptor EphA7 , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Células de Schwann/metabolismo , Células de Schwann/ultraestrutura , Transdução de Sinais/genética , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/genética , Transfecção
14.
Neurosci Lett ; 301(2): 107-10, 2001 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-11248434

RESUMO

Neurotrophic factors are target-derived proteins that promote the survival and differentiation of the innervating neurons. Increasing evidence indicate the involvement of these factors and receptors during the formation and maturation of the neuromuscular junction. To gain further insight on the expression pattern of these factors and receptors in developing spinal cord and skeletal muscle during the critical stages of synapse formation, a systematic study was performed with chicken and rat tissues using Northern blot analysis. The expression of all the neurotrophins was detected in skeletal muscle early in development, coincidental with the appearance of their corresponding receptors in the spinal cord. Taken together, the similar regulatory patterns observed in both rat and chicken tissues suggest that the potential roles of neurotrophins at the neuromuscular synapse are conserved throughout evolution.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fatores de Crescimento Neural/genética , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/fisiologia , Animais , Northern Blotting , Fator Neurotrófico Derivado do Encéfalo/genética , Galinhas , Período Crítico Psicológico , Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/inervação , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/fisiologia , Neurotrofina 3/genética , RNA Mensageiro/análise , Ratos , Receptor trkB/genética
15.
J Biol Chem ; 276(20): 17083-91, 2001 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-11278750

RESUMO

Retinoic acid (RA), a derivative of vitamin A, is essential for the normal patterning and neurogenesis during development. RA treatment induces growth arrest and terminal differentiation of a human embryonal carcinoma cell line (NT2) into postmitotic central nervous system neurons. Using RNA fingerprinting by arbitrarily primed polymerase chain reaction, we identified a novel serine/threonine-rich protein, RA-regulated nuclear matrix-associated protein (Ramp), that was down-regulated during the RA-induced differentiation of NT2 cells. Prominent mRNA expression of ramp could be detected in adult placenta and testis as well as in all human fetal tissues examined. The genomic clone of ramp has been mapped to the telomere of chromosome arm 1q, corresponding to band 1q32.1-32.2. Associated with the nuclear matrix of NT2 cells, Ramp translocates from the interphase nucleus to the metaphase cytoplasm during mitosis. During the late stage of cytokinesis, Ramp concentrates at the midzone of the dividing daughter cells. The transcript expression of ramp is closely correlated with the cell proliferation rate of NT2 cells. Moreover, overexpression of Ramp induces a transient increase in the proliferation rate of NT2 cells. Taken together, our data suggest that Ramp plays a role in the proliferation of the human embryonal carcinoma cells.


Assuntos
Regulação da Expressão Gênica/fisiologia , Neurônios/fisiologia , Matriz Nuclear/metabolismo , Proteínas Nucleares/genética , Transcrição Gênica , Tretinoína/farmacologia , Adulto , Fosfatase Alcalina/genética , Sequência de Aminoácidos , Carcinoma Embrionário , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Clonagem Molecular , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Biblioteca Gênica , Humanos , Masculino , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Especificidade de Órgãos , Placenta/metabolismo , Gravidez , Regiões Promotoras Genéticas , Conformação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica/efeitos dos fármacos , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases
16.
Nat Neurosci ; 4(4): 374-81, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11276227

RESUMO

Here we describe an important involvement of Cdk5/p35 in regulating the gene expression of acetylcholine receptor (AChR) at the neuromuscular synapse. Cdk5 and p35 were prominently expressed in embryonic muscle, and concentrated at the neuromuscular junction in adulthood. Neuregulin increased the p35-associated Cdk5 kinase activity in the membrane fraction of cultured C2C12 myotubes. Co-immunoprecipitation studies revealed the association between Cdk5, p35 and ErbB receptors in muscle and cultured myotubes. Inhibition of Cdk5 activity not only blocked the NRG-induced AChR transcription, but also attenuated ErbB activation in cultured myotubes. In light of our finding that overexpression of p35 alone led to an increase in AChR promoter activity in muscle, Cdk5 activation is sufficient to mediate the up-regulation of AChR gene expression. Taken together, these results reveal the unexpected involvement of Cdk5/p35 in neuregulin signaling at the neuromuscular synapse.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/genética , Neurregulinas/metabolismo , Junção Neuromuscular/fisiologia , Receptores Colinérgicos/metabolismo , Animais , Western Blotting , Química Encefálica , Fracionamento Celular , Linhagem Celular , Embrião de Galinha , Quinase 5 Dependente de Ciclina , Embrião de Mamíferos/fisiologia , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/fisiologia , Desenvolvimento Muscular , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Músculo Esquelético/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Neurregulinas/genética , Fosforilação , Testes de Precipitina , Ratos , Receptor ErbB-2/metabolismo , Receptores Colinérgicos/genética , Proteínas Recombinantes/metabolismo , Transfecção , Transgenes/genética
17.
FEBS Lett ; 486(3): 291-6, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11119721

RESUMO

The pharmacology and clinical application of traditional Chinese medicine has been extensively documented. We have used an in vitro model system, PC12 cells, to demonstrate the presence of neuroactive compounds in Ganoderma lucidum (lingzhi). Ganoderma extract induced the neuronal differentiation of PC12 cells and prevented nerve growth factor-dependent PC12 neurons from apoptosis. Moreover, these effects of ganoderma might be mediated via the ras/extracellular signal-regulated kinase (Erk) and cAMP-response element binding protein (CREB) signaling pathways, as demonstrated by the phosphorylation of Erk1, Erk2 and CREB. Thus, our data not only present the first evidence of the presence of neuroactive compounds that mediate the neuronal differentiation and neuroprotection of the PC12 cells, but also reveal the potential signaling molecules involved in its action.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Animais , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Marcação In Situ das Extremidades Cortadas , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Fator de Crescimento Neural/farmacologia , Proteínas de Neurofilamentos/biossíntese , Neurônios/citologia , Células PC12 , Feocromocitoma/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Receptor trkA/metabolismo , Reishi/química , Transdução de Sinais
18.
Mol Cell Neurosci ; 16(5): 661-73, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11083926

RESUMO

Muscle-specific kinase (MuSK) is part of the receptor complex that is involved in the agrin-induced formation of the neuromuscular junction. In the rodent, prominent mRNA expression of MuSK is restricted to skeletal muscle while the expression of agrin can also be detected in brain and certain nonneuronal tissues. The recent identification of Xenopus MuSK reveals that MuSK can be detected in tissues other than skeletal muscle, such as the neural tube, eye vesicles, and spleen. In this study, we describe the cloning and characterization of the chicken ortholog of MuSK and demonstrate that the regulation of MuSK expression in muscle is conserved from avian to rodent. Abundant mRNA expression of MuSK can be detected in early embryonic chick muscle and is up-regulated after nerve injury. More importantly, we also demonstrate that, in the chicken, MuSK mRNA is expressed during development in brain and liver, suggesting possible novel functions for MuSK. Furthermore, the regulatory profile of MuSK expression in chick muscle closely parallels that observed for acetylcholine receptor, in terms of both mRNA expression and protein localization. Finally, studies with paralyzed chicken muscle as well as with cultured chick myotubes demonstrate the dependence of MuSK on both electrical activity and trophic factors.


Assuntos
Galinhas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos , Animais , Células Cultivadas , Embrião de Galinha , Clonagem Molecular , Dados de Sequência Molecular , Denervação Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/enzimologia , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Músculo Esquelético/inervação , Compressão Nervosa , Paralisia/induzido quimicamente , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Ratos , Receptores Proteína Tirosina Quinases/química , Nervo Isquiático/fisiologia , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Tetrodotoxina/farmacologia , Transcrição Gênica/fisiologia
19.
J Magn Reson ; 146(1): 228-31, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10968977

RESUMO

The J-multiplied HSQC experiment (MJ-HSQC: S. Heikkinen et al., J. Magn. Reson 137, 243 (1999)) amplifies J coupling constants m times and allows direct observation of the (3)J(HNHalpha) coupling constants of peptides and proteins (<10 kDa). The drawbacks to this method are line broadening in the f(1)-dimension and lower sensitivity. In the J-multiplied HMQC (MJ-HMQC) experiment described here, the PEP-HSQC pulse sequence is replaced by a sensitivity-enhanced HMQC section, and the total decay time for the J-coupling and the chemical shift evolution is shortened by a period of t(1). This experiment affords narrower linewidth and enhances the sensitivity by 34%, on an average of 105 well-isolated peaks, when compared with the MJ-HSQC experiment.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Proteínas/química , Algoritmos , Isótopos de Nitrogênio , Receptor do Fator Neutrófico Ciliar/química
20.
Leuk Res ; 24(9): 751-9, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10978779

RESUMO

We have recently reported that retinoic acid (RA) induced the expression of trkA, the high affinity receptor for nerve growth factor (NGF), in human chronic myelogenous leukemia K562 cells. In this paper, we examined the ability of several other differentiation inducers to regulate the expression of trkA and NGF in K562 cells. We found that the expression of trkA was dramatically induced by the two megakaryocyte lineage inducers sodium butyrate (NaBut) and phorbol 12-myristate 13-acetate (PMA), but not by the two erythrocyte lineage inducers hemin or 1-beta-D-arabinofuranosyl cytosine (Ara-C). Furthermore, activation of the up-regulated trkA receptor by exogenous NGF potentiated the megakaryocytic differentiation of K562 cells induced by NaBut and PMA. Our results demonstrated that trkA is one of the essential genes that are up-regulated and involved in the megakaryocytic differentiation of K562 leukemia cells triggered by these differentiation inducers. Our findings suggest that NGF, in addition to its pivotal roles in the nervous system, may also play important roles in hematopoietic differentiation.


Assuntos
Ácido Butírico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Humanos , Células K562 , Megacariócitos/citologia , Receptor trkA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...