Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 373(Pt A): 131400, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34742044

RESUMO

The use of phytochemicals for nutritional wellness has attracted worldwide attention and resulted in development of innovative formulations. Turmeric latte is one such formulation. However, an in-depth study on its physicochemical properties and oral bioavailability has not been conducted as yet. We present a ready-to-use turmeric latte by microencapsulating turmeric oleoresin (TO) with a blend of gum acacia, maltodextrin, and dairy whitener (DW) with bioenhancers by spray drying. The microencapsulated powder obtained exhibited >95% encapsulation efficiency, desired curcumin content, of 539.98 ± 6.56 to 706.40 ± 5.25 mg/100 g, wettability time below 40 s, and dispersibility above 95%. Turmeric latte released >95% of curcumin at pH 1.2 HCl with 0.1% Tween 80, which was ascribed in part to curcumin amorphization as evidenced by DSC and XRD. Turmeric latte demonstrated superior antioxidant activity with 4.2-fold enhanced permeability through non-everted rat intestine and 4.9-fold higher oral bioavailability in rats confirming bioenhancement.


Assuntos
Curcuma , Curcumina , Animais , Disponibilidade Biológica , Leite , Extratos Vegetais , Pós , Ratos
2.
Eur J Drug Metab Pharmacokinet ; 44(4): 459-480, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30771095

RESUMO

Curcumin is a promising therapeutic agent that exhibits manifold therapeutic activities. However, it is challenging to study curcumin as it exhibits poor aqueous solubility and low permeability and it is a substrate for P-glycoprotein (P-gp). It is readily metabolized in the body, but many active metabolites of curcumin have been identified that could also be exploited for therapy. Strategies for the oral bioenhancement of curcumin to leverage the potential of curcumin as a therapeutic molecule are discussed here in light of these challenges. A brief discussion of conventional bioenhancement strategies using cyclodextrin complexes, solid dispersions, and solid self-emulsifying drug delivery systems is given. However, the major focus of this review is the application of nano-based approaches to the bioenhancement of curcumin. A description of the main advantages of nanosystems is followed by a detailed review of various nanosystems of curcumin, including nanosuspensions and various carrier-based nanosystems. Each nanosystem considered here is first briefly introduced, and then studies of the nanosystem containing curcumin are discussed. Lipid-based systems including liposomes and solid lipid nanoparticles, microemulsions, self-microemulsifying drug-delivery systems, nanoemulsions, and polymeric nanoparticles-which are widely explored-are dealt with in detail. Other miscellaneous systems discussed include inorganic nanoparticles, micelles, solid nanodispersions, phytosomes, and dendrimers. The possibility of using intact nanoparticles to achieve the targeted oral delivery of curcumin and thus harness the benefits of this wonder nutraceutical is an exciting prospect.


Assuntos
Curcumina/química , Curcumina/metabolismo , Emulsões/química , Emulsões/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...