Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(9): e2306954, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37812735

RESUMO

Thin film networks of solution processed nanosheets show remarkable promise for use in a broad range of applications including strain sensors, energy storage, printed devices, textile electronics, and more. While it is known that their electronic properties rely heavily on their morphology, little is known of their mechanical nature, a glaring omission given the effect mechanical deformation has on the morphology of porous systems and the promise of mechanical post processing for tailored properties. Here, this work employs a recent advance in thin film mechanical testing called the Layer Compression Test to perform the first in situ analysis of printed nanosheet network compression. Due to the well-defined deformation geometry of this unique test, this work is able to explore the out-of-plane elastic, plastic, and creep deformation in these systems, extracting properties of elastic modulus, plastic yield, viscoelasticity, tensile failure and sheet bending vs. slippage under both out of plane uniaxial compression and tension. This work characterizes these for a range of networks of differing porosities and sheet sizes, for low and high compression, as well as the effect of chemical cross linking. This work explores graphene and MoS2 networks, from which the results can be extended to printed nanosheet networks as a whole.

3.
Adv Mater ; 35(15): e2211157, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36648210

RESUMO

Device performance of solution-processed 2D semiconductors in printed electronics has been limited so far by structural defects and high interflake junction resistance. Covalently interconnected networks of transition metal dichalcogenides potentially represent an efficient strategy to overcome both limitations simultaneously. Yet, the charge-transport properties in such systems have not been systematically researched. Here, the charge-transport mechanisms of printed devices based on covalent MoS2 networks are unveiled via multiscale analysis, comparing the effects of aromatic versus aliphatic dithiolated linkers. Temperature-dependent electrical measurements reveal hopping as the dominant transport mechanism: aliphatic systems lead to 3D variable range hopping, unlike the nearest neighbor hopping observed for aromatic linkers. The novel analysis based on percolation theory attributes the superior performance of devices functionalized with π-conjugated molecules to the improved interflake electronic connectivity and formation of additional percolation paths, as further corroborated by density functional calculations. Valuable guidelines for harnessing the charge-transport properties in MoS2 devices based on covalent networks are provided.

4.
Small ; 18(20): e2107652, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35451183

RESUMO

Human health can be affected by materials indirectly through exposure to the environment or directly through close contact and uptake. With the ever-growing use of 2D materials in many applications such as electronics, medical therapeutics, molecular sensing, and energy storage, it has become more pertinent to investigate their impact on the immune system. Dendritic cells (DCs) are highly important, considering their role as the main link between the innate and the adaptive immune system. By using primary human DCs, it is shown that hexagonal boron nitride (hBN), graphene oxide (GO) and molybdenum disulphide have minimal effects on viability. In particular, it is evidenced that hBN and GO increase DC maturation, while GO leads to the release of reactive oxygen species and pro-inflammatory cytokines. hBN and MoS2 increase T cell proliferation with and without the presence of DCs. hBN in particular does not show any sign of downstream T cell polarization. The study allows ranking of the three materials in terms of inherent toxicity, providing the following trend: GO > hBN ≈ MoS2 , with GO the most cytotoxic.


Assuntos
Células Dendríticas , Molibdênio , Humanos , Molibdênio/toxicidade
5.
ACS Nano ; 15(6): 10668-10677, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34096713

RESUMO

The forthcoming saturation of Moore's law has led to a strong demand for integrating analogue functionalities within semiconductor-based devices. As a step toward this goal, we fabricate quaternary-responsive WSe2-based field-effect transistors (FETs) whose output current can be remotely and reversibly controlled by light, heat, and electric field. A photochromic silane-terminated spiropyran (SP) is chemisorbed on SiO2 forming a self-assembled monolayer (SAM) that can switch from the SP to the merocyanine (MC) form in response to UV illumination and switch back by either heat or visible illumination. Such a SAM is incorporated at the dielectric-semiconductor interface in WSe2-based FETs. Upon UV irradiation, a drastic decrease in the output current of 82% is observed and ascribed to the zwitterionic MC isomer acting as charge scattering site. To provide an additional functionality, the WSe2 top surface is coated with a ferroelectric co-polymer layer based on poly(vinylidene fluoride-co-trifluoroethylene). Because of its switchable inherent electrical polarization, it can promote either the accumulation or depletion of charge carriers in the WSe2 channel, thereby inducing a current modulation with 99% efficiency. Thanks to the efficient tuning induced by the two components and their synergistic effects, the device polarity could be modulated from n-type to p-type. Such a control over the carrier concentration and device polarity is key to develop 2D advanced electronics. Moreover, the integration strategy of multiple stimuli-responsive elements into a single FET allows us to greatly enrich its functionality, thereby promoting the development for More-than-Moore technology.

6.
Nat Nanotechnol ; 16(5): 592-598, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33633405

RESUMO

Solution-processed semiconducting transition metal dichalcogenides are at the centre of an ever-increasing research effort in printed (opto)electronics. However, device performance is limited by structural defects resulting from the exfoliation process and poor inter-flake electronic connectivity. Here, we report a new molecular strategy to boost the electrical performance of transition metal dichalcogenide-based devices via the use of dithiolated conjugated molecules, to simultaneously heal sulfur vacancies in solution-processed transition metal disulfides and covalently bridge adjacent flakes, thereby promoting percolation pathways for the charge transport. We achieve a reproducible increase by one order of magnitude in field-effect mobility (µFE), current ratio (ION/IOFF) and switching time (τS) for liquid-gated transistors, reaching 10-2 cm2 V-1 s-1, 104 and 18 ms, respectively. Our functionalization strategy is a universal route to simultaneously enhance the electronic connectivity in transition metal disulfide networks and tailor on demand their physicochemical properties according to the envisioned applications.

7.
Chem Commun (Camb) ; 56(99): 15573-15576, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33244537

RESUMO

A systematic investigation of the experimental conditions for the chemical exfoliation of MoS2 using n-butyllithium as intercalating agent has been carried out to unravel the effect of reaction time and temperature for maximizing the percentage of monolayer thick-flakes and achieve a control over the content of metallic 1T vs. semiconductive 2H phases, thereby tuning the electrical properties of ultrathin MoS2 few-layer thick films.

8.
Small ; 16(35): e2002194, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32743979

RESUMO

Graphene and other 2D materials, such as molybdenum disulfide, have been increasingly used in electronics, composites, and biomedicine. In particular, MoS2 and graphene hybrids have attracted a great interest for applications in the biomedical research, therefore stimulating a pertinent investigation on their safety in immune cells like macrophages, which commonly engulf these materials. In this study, M1 and M2 macrophage viability and activation are mainly found to be unaffected by few-layer graphene (FLG) and MoS2 at doses up to 50 µg mL-1 . The uptake of both materials is confirmed by transmission electron microscopy, inductively coupled plasma mass spectrometry, and inductively coupled plasma atomic emission spectroscopy. Notably, both 2D materials increase the secretion of inflammatory cytokines in M1 macrophages. At the highest dose, FLG decreases CD206 expression while MoS2 decreases CD80 expression. CathB and CathL gene expressions are dose-dependently increased by both materials. Despite a minimal impact on the autophagic pathway, FLG is found to increase the expression of Atg5 and autophagic flux, as observed by Western blotting of LC3-II, in M1 macrophages. Overall, FLG and MoS2 are of little toxicity in human macrophages even though they are found to trigger cell stress and inflammatory responses.


Assuntos
Grafite , Molibdênio , Dissulfetos , Proteínas Filagrinas , Grafite/toxicidade , Humanos , Macrófagos , Molibdênio/toxicidade
9.
Chem Commun (Camb) ; 56(50): 6878-6881, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32432577

RESUMO

Dual functionalization of chemically exfoliated MoS2 has been achieved by exploiting coulombic interactions among positively charged molecules and the negatively charged 2D flakes. The reversibility and kinetics of the process have been studied by spectroscopic tools. The hybrid material has been transferred to various substrates, yielding multifunctional robust flexible films.

10.
Chem Commun (Camb) ; 55(61): 8900-8914, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31281916

RESUMO

During the last five years, the scientific community has witnessed tremendous progress in solution-processed semiconducting 2D transition metal dichalcogenides (TMDs), in combination with the use of chemical approaches to finely tune their electrical, optical, mechanical and thermal properties. Because of the strong structure-properties relationship, the adopted production methods contribute in affecting the quality and characteristics of the nanomaterials, along with the costs, scalability and yield of the process. Nevertheless, a number of (supra)molecular approaches have been developed to meticulously tailor the properties of TMDs via formation of both covalent and non-covalent bonds, where small molecules, (bio)polymers or nanoparticles interact with the basal plane and/or edges of the 2D nanosheets in a controlled fashion. In this Feature Article, we will highlight the recent advancements in the development of production strategies and molecular approaches for tailoring the properties of solution-processed TMD nanosheets. We will also discuss opportunities and challenges towards the realization of multifunctional devices and sensors based on such novel hybrid nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...