Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(3): e58668, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516531

RESUMO

Calcium-dependent release of neurotrophic factors plays an important role in the maintenance of neurons, yet the release mechanisms are understudied. The inositol triphosphate (IP3) receptor is a calcium release channel that has a physiological role in cell growth, development, sensory perception, neuronal signaling and secretion. In the olfactory system, the IP3 receptor subtype 3 (IP3R3) is expressed exclusively in a microvillous cell subtype that is the predominant cell expressing neurotrophic factor neuropeptide Y (NPY). We hypothesized that IP3R3-expressing microvillous cells secrete sufficient NPY needed for both the continual maintenance of the neuronal population and for neuroregeneration following injury. We addressed this question by assessing the release of NPY and the regenerative capabilities of wild type, IP3R3(+/-), and IP3R3(-/-) mice. Injury, simulated using extracellular ATP, induced IP3 receptor-mediated NPY release in wild-type mice. ATP-evoked NPY release was impaired in IP3R3(-/-) mice, suggesting that IP3R3 contributes to NPY release following injury. Under normal physiological conditions, both IP3R3(-/-) mice and explants from these mice had fewer progenitor cells that proliferate and differentiate into immature neurons. Although the number of mature neurons and the in vivo rate of proliferation were not altered, the proliferative response to the olfactotoxicant satratoxin G and olfactory bulb ablation injury was compromised in the olfactory epithelium of IP3R3(-/-) mice. The reductions in both NPY release and number of progenitor cells in IP3R3(-/-) mice point to a role of the IP3R3 in tissue homeostasis and neuroregeneration. Collectively, these data suggest that IP3R3 expressing microvillous cells are actively responsive to injury and promote recovery.


Assuntos
Regulação da Expressão Gênica , Homeostase , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neuropeptídeo Y/metabolismo , Mucosa Olfatória/citologia , Mucosa Olfatória/fisiologia , Regeneração , Animais , Proliferação de Células , Técnicas de Inativação de Genes , Receptores de Inositol 1,4,5-Trifosfato/deficiência , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Mucosa Olfatória/lesões , Mucosa Olfatória/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
Toxicol Sci ; 124(1): 169-78, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21865290

RESUMO

Intranasal aspiration of satratoxin G (SG), a mycotoxin produced by the black mold Stachybotrys chartarum, selectively induces apoptosis in olfactory sensory neurons (OSNs) in mouse olfactory epithelium (OE) through unknown mechanisms. Here, we show a dose-dependent induction of apoptosis 24 h post-SG exposure in vitro as measured by increased activated caspases in the OP6 olfactory placodal cell line and increased propidium iodide staining in primary OE cell cultures. Intranasal aspiration of SG increased TUNEL (Terminal dUTP Nick End Labeling) staining in the neuronal layer of the OE and significantly increased the latency to find a buried food pellet, confirming that SG selectively induces neuronal apoptosis and demonstrating that SG impairs the sense of smell. Next, we investigated whether ATP can prevent SG-induced OE toxicity. ATP did not decrease apoptosis under physiological conditions but significantly reduced SG-induced OSN apoptosis in vivo and in vitro. Furthermore, purinergic receptor inhibition significantly increased apoptosis in OE primary cell culture and in vivo. These data indicate that ATP is neuroprotective against SG-induced OE toxicity. The number of cells that incorporated 5'-bromodeoxyuridine, a measure of proliferation, was significantly increased 3 and 6 days post-SG aspiration. Treatment with purinergic receptor antagonists significantly reduced SG-induced cell proliferation, whereas post-treatment with ATP significantly potentiated SG-induced cell proliferation. These data indicate that ATP is released and promotes cell proliferation via activation of purinergic receptors in SG-induced OE injury. Thus, the purinergic system is a therapeutic target to alleviate or restore the loss of OSNs.


Assuntos
Trifosfato de Adenosina/fisiologia , Proliferação de Células/efeitos dos fármacos , Mucosa Olfatória/efeitos dos fármacos , Neurônios Receptores Olfatórios/efeitos dos fármacos , Tricotecenos/toxicidade , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Administração Intranasal , Animais , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular , Relação Dose-Resposta a Droga , Citometria de Fluxo , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Neurônios Receptores Olfatórios/metabolismo , Neurônios Receptores Olfatórios/patologia , Olfato/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...