Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 628, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865759

RESUMO

BACKGROUND: The survival and fertility of heifers are critical factors for the success of dairy farms. The mortality of heifers poses a significant challenge to the management and profitability of the dairy industry. In dairy farming, achieving early first calving of heifers is also essential for optimal productivity and sustainability. Recently, Council on Dairy Cattle Breeding (CDCB) and USDA have developed new evaluations of heifer health and fertility traits. However, the genetic basis of these traits has yet to be thoroughly studied. RESULTS: Leveraging the extensive U.S dairy genomic database maintained at CDCB, we conducted large-scale GWAS analyses of two heifer traits, livability and early first calving. Despite the large sample size, we found no major QTL for heifer livability. However, we identified a major QTL in the bovine MHC region associated with early first calving. Our GO analysis based on nearby genes detected 91 significant GO terms with a large proportion related to the immune system. This QTL in the MHC region was also confirmed in the analysis of 27 K bull with imputed sequence variants. Since these traits have few major QTL, we evaluated the genome-wide distribution of GWAS signals across different functional genomics categories. For heifer livability, we observed significant enrichment in promotor and enhancer-related regions. For early calving, we found more associations in active TSS, active Elements, and Insulator. We also identified significant enrichment of CDS and conserved variants in the GWAS results of both traits. By linking GWAS results and transcriptome data from the CattleGTEx project via TWAS, we detected four and 23 significant gene-trait association pairs for heifer livability and early calving, respectively. Interestingly, we discovered six genes for early calving in the Bovine MHC region, including two genes in lymph node tissue and one gene each in blood, adipose, hypothalamus, and leukocyte. CONCLUSION: Our large-scale GWAS analyses of two heifer traits identified a major QTL in the bovine MHC region for early first calving. Additional functional enrichment and TWAS analyses confirmed the MHC QTL with relevant biological evidence. Our results revealed the complex genetic basis of heifer health and fertility traits and indicated a potential connection between the immune system and reproduction in cattle.


Assuntos
Estudo de Associação Genômica Ampla , Reprodução , Bovinos/genética , Animais , Feminino , Masculino , Estudo de Associação Genômica Ampla/veterinária , Fertilidade/genética , Genoma , Fenótipo
2.
Genes (Basel) ; 14(9)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37761929

RESUMO

This study aims to collect RNA-Seq data from Bos taurus samples representing dry and lactating mammary tissue, identify lncRNA transcripts, and analyze findings for their features and functional annotation. This allows for connections to be drawn between lncRNA and the lactation process. RNA-Seq data from 103 samples of Bos taurus mammary tissue were gathered from publicly available databases (60 dry, 43 lactating). The samples were filtered to reveal 214 dry mammary lncRNA transcripts and 517 lactating mammary lncRNA transcripts. The lncRNAs met common lncRNA characteristics such as shorter length, fewer exons, lower expression levels, and less sequence conservation when compared to the genome. Interestingly, several lncRNAs showed sequence similarity to genes associated with strong hair keratin intermediate filaments. Human breast cancer research has associated strong hair keratin filaments with mammary tissue cellular resilience. The lncRNAs were also associated with several genes/proteins that linked to pregnancy using expression correlation and gene ontology. Such findings indicate that there are crucial relationships between the lncRNAs found in mammary tissue and the development of the tissue, to meet both the animal's needs and our own production needs; these relationships should be further investigated to ensure that we continue to breed the most resilient, efficient dairy cattle.


Assuntos
Lactação , RNA Longo não Codificante , Humanos , Feminino , Gravidez , Bovinos/genética , Animais , Lactação/genética , RNA Longo não Codificante/genética , Queratinas Específicas do Cabelo , Filamentos Intermediários , Citoesqueleto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA