Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 637-638: 1137-1149, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29801207

RESUMO

The Rim Fire was one of the largest wildfires in California history, burning over 250,000 acres during August and September 2013 affecting air quality locally and regionally in the western U.S. Routine surface monitors, remotely sensed data, and aircraft based measurements were used to assess how well the Community Multiscale Air Quality (CMAQ) photochemical grid model applied at 4 and 12 km resolution represented regional plume transport and chemical evolution during this extreme wildland fire episode. Impacts were generally similar at both grid resolutions although notable differences were seen in some secondary pollutants (e.g., formaldehyde and peroxyacyl nitrate) near the Rim fire. The modeling system does well at capturing near-fire to regional scale smoke plume transport compared to remotely sensed aerosol optical depth (AOD) and aircraft transect measurements. Plume rise for the Rim fire was well characterized as the modeled plume top was consistent with remotely sensed data and the altitude of aircraft measurements, which were typically made at the top edge of the plume. Aircraft-based lidar suggests O3 downwind in the Rim fire plume was vertically stratified and tended to be higher at the plume top, while CMAQ estimated a more uniformly mixed column of O3. Predicted wildfire ozone (O3) was overestimated both at the plume top and at nearby rural and urban surface monitors. Photolysis rates were well characterized by the model compared with aircraft measurements meaning aerosol attenuation was reasonably estimated and unlikely contributing to O3 overestimates at the top of the plume. Organic carbon was underestimated close to the Rim fire compared to aircraft data, but was consistent with nearby surface measurements. Periods of elevated surface PM2.5 at rural monitors near the Rim fire were not usually coincident with elevated O3.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Modelos Químicos , Incêndios Florestais , Poluição do Ar/estatística & dados numéricos , Aeronaves , California , Modelos Teóricos , Ozônio , Imagens de Satélites
2.
Atmos Chem Phys ; 15: 4225-4239, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27212937

RESUMO

Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal have the potential to produce significant organic aerosol mass and therefore could potentially impact chemical, optical and/or cloud-forming properties of aerosols, especially if the products partition to the aerosol surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...