Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 563: 241-251, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31877421

RESUMO

Growing demands for clean and renewable energy technologies have sparked broad research on the development of highly efficient and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this regard, in the present work a three-dimensional Fe2TiO5/nitrogen-doped graphene (denoted as 3D FTO/NG) hybrid electrocatalyst was synthesized via a facile in-situ process using a hydrothermal method. Structural characterization of the prepared nanocomposite is performed by various techniques e.g. field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) analysis, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy spectra (XPS), X-ray diffraction (XRD) and Raman spectroscopic methods. A novel binder-free electrode for OER activity has been prepared by coating a 3D FTO/NG onto nickel foam (NF). In particular, the 3D FTO/NG nanocomposite, which is synthesized with in-situ hydrothermal process, exhibited a remarkable OER performance in alkaline media. The prepared electrocatalyst showed a small overpotential of 0.36 V with a Tafel slope of 0.07 V dec-1 at 100 A m-2 with a long-term stability for OER reaction in 1 M KOH. The outstanding OER performance and durability of 3D FTO/NG can be attributed to the synergistic effects originating from NG and FTO in the prepared electrocatalyst, which helps to enhance the conductivity of the nanocomposite. The presence of conductive NG in the prepared 3D nanocomposite can not only improve the mechanical stability, but also facilitate its electron transport. Also, N atoms and FTO provide abundant electrocatalytic active sites, which accelerate evolution of gas bubbles. This work provides a promising approach for synthesis of inexpensive and efficient OER electrocatalysts.

2.
Toxicol Ind Health ; 34(5): 339-352, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29591890

RESUMO

INTRODUCTION: Semiconductor quantum dots (QDs), especially those containing cadmium, have undergone marked improvements and are now widely used nanomaterials in applicable biological fields. However, great concerns exist regarding their toxicity in biomedical applications. Because of the lack of sufficient data regarding the toxicity mechanism of QDs, this study aimed to evaluate the cytotoxicity of three types of QDs: CdTe QDs, high yield CdTe QDs, and CdTe/CdS core/shell QDs on two human breast cancer cell lines MDA-MB468 and MCF-7. METHODS: The breast cancer cells were treated with different concentrations of QDs, and cell viability was evaluated via MTT assay. Hoechst staining was applied for observation of morphological changes due to apoptosis. Apoptotic DNA fragmentation was visualized by the agarose gel electrophoresis assay. Flow cytometric annexin V/propidium iodide (PI) measurement was used for apoptosis detection. RESULTS: A significant decrease in cell viability was observed after QDs treatment ( p < 0.05). Apoptotic bodies and chromatin condensation was observed by Hoechst staining. DNA fragmentation assay demonstrated a DNA ladder profile in the exposed cells and also annexin V/PI flow cytometry confirmed apoptosis in a dose-dependent manner. CONCLUSION: Our results revealed that CdTe, high yield CdTe, and CdTe/CdS core/shell QDs induce apoptosis in breast cancer cell lines in a dose-dependent manner. This study would help realizing the underlying cytotoxicity mechanism, at least partly, of CdTe QDs and may provide information for the development of nanotoxicology and safe use of biological applications of QDs.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Cádmio/toxicidade , Pontos Quânticos/toxicidade , Telúrio/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Humanos , Células MCF-7
3.
Sci Rep ; 6: 27847, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27297588

RESUMO

As a bi-functional cancer treatment agent, a new hybrid nanostructure is presented which can be used for photothermal therapy by exposure to one order of magnitude lower laser powers compared to similar nanostructures in addition to substantial enhancment in magnetic resonance imaging (MRI) contrast. This gold-iron oxide hybrid nanostructure (GIHN) is synthesized by a cost-effective and high yield water-based approach. The GIHN is sheilded by PEG. Therefore, it shows high hemo and biocompatibility and more than six month stability. Alongside earlier nanostructures, the heat generation rate of GIHN is compareable with surfactnat-capped gold nanorods (GNRs). Two reasons are behind this enhancement: Firstly the distance between GNRs and SPIONs is adjusted in a way that the surface plasmon resonance of the new nanostructure is similar to bare GNRs and secondly the fraction of GNRs is raised in the hybrid nanostructure. GIHN is then applied as a photothermal agent using laser irradiation with power as low as 0.5 W.cm(-2) and only 32% of human breast adenocarcinoma cells could survive. The GIHN also acts as a dose-dependent transvers relaxation time (T2) MRI contrast agent. The results show that the GINH can be considered as a good candidate for multimodal photothermal therapy and MRI.


Assuntos
Adenocarcinoma/terapia , Neoplasias da Mama/terapia , Fibroblastos/fisiologia , Temperatura Alta/uso terapêutico , Nanoestruturas/estatística & dados numéricos , Fototerapia , Animais , Terapia Combinada , Feminino , Compostos Férricos/química , Ouro/química , Humanos , Células MCF-7 , Imageamento por Ressonância Magnética , Camundongos , Nanoestruturas/química , Polietilenoglicóis/química , Ressonância de Plasmônio de Superfície
4.
Phys Chem Chem Phys ; 15(6): 2075-80, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23288145

RESUMO

We present an investigation on the optimisation of solid-state dye sensitized solar cells (SDSCs) comprising mesoporous tin oxide photoanodes infiltrated with poly(3-hexylthiophene-2,5-diyl) (P3HT) hole conductor and sensitized with an organic dye. We chose both the SnO(2) and P3HT for their high charge carrier mobilities and conductivities, but as a result preclude conventional device configurations because of high leakage current and low shunt-resistance. To minimize the "hole leakage current" through the FTO anode, we employed a double compact layer structure, and to minimize "electron leakage current" at the silver cathode, we developed a protocol for depositing an optimal P3HT "capping layer". After optimisation of cell fabrication, the electron lifetime is increased considerably and the solar cells exhibited simulated AM1.5 full sun solar power conversion efficiencies in excess of 1%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...