Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(52): e2310797120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113260

RESUMO

We demonstrate geostationary satellite monitoring of large transient methane point sources with the US Geostationary Operational Environmental Satellites (GOES). GOES provides continuous 5- to 10-min coverage of the Americas at 1 to 2 km nadir pixel resolution in two shortwave infrared spectral bands from which large methane plumes can be retrieved. We track the full evolution of an extreme methane release from the El Encino-La Laguna natural gas pipeline in Durango, Mexico on 12 May 2019. The release lasted 3 h at a variable rate of 260 to 550 metric tons of methane per hour and totaled 1,130 to 1,380 metric tons. We report several other detections of transient point sources from oil/gas infrastructure, from which we infer a detection limit of 10 to 100 t h-1. Our results show that extreme releases of methane can last less than an hour, as from deliberate venting, and would thus be difficult to identify and quantify with low-Earth orbit satellites.

2.
Sci Adv ; 9(46): eadh2391, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976355

RESUMO

Carbon dioxide and methane emissions are the two primary anthropogenic climate-forcing agents and an important source of uncertainty in the global carbon budget. Uncertainties are further magnified when emissions occur at fine spatial scales (<1 km), making attribution challenging. We present the first observations from NASA's Earth Surface Mineral Dust Source Investigation (EMIT) imaging spectrometer showing quantification and attribution of fine-scale methane (0.3 to 73 tonnes CH4 hour-1) and carbon dioxide sources (1571 to 3511 tonnes CO2 hour-1) spanning the oil and gas, waste, and energy sectors. For selected countries observed during the first 30 days of EMIT operations, methane emissions varied at a regional scale, with the largest total emissions observed for Turkmenistan (731 ± 148 tonnes CH4 hour-1). These results highlight the contributions of current and planned point source imagers in closing global carbon budgets.

3.
Environ Sci Technol ; 56(4): 2143-2152, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35102741

RESUMO

Reduction of fossil fuel-related methane emissions has been identified as an essential means for climate change mitigation, but emission source identification remains elusive for most oil and gas production basins in the world. We combine three complementary satellite data sets to survey single methane emission sources on the west coast of Turkmenistan, one of the largest methane hotspots in the world. We found 29 different emitters, with emission rates >1800 kg/h, active in the 2017-2020 time period, although older satellite data show that this type of emission has been occurring for decades. We find that all sources are linked to extraction fields mainly dedicated to crude oil production, where 24 of them are inactive flares venting gas. The analysis of time series suggests a causal relationship between the decrease in flaring and the increase in venting. At the regional level, 2020 shows a substantial increase in the number of methane plume detections concerning previous years. Our results suggest that these large venting point sources represent a key mitigation opportunity as they emanate from human-controlled facilities, and that new satellite methods promise a revolution in the detection and monitoring of methane point emissions worldwide.


Assuntos
Poluentes Atmosféricos , Petróleo , Poluentes Atmosféricos/análise , Humanos , Metano/análise , Gás Natural/análise
4.
Sci Adv ; 7(27)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34193415

RESUMO

Industrial emissions play a major role in the global methane budget. The Permian basin is thought to be responsible for almost half of the methane emissions from all U.S. oil- and gas-producing regions, but little is known about individual contributors, a prerequisite for mitigation. We use a new class of satellite measurements acquired during several days in 2019 and 2020 to perform the first regional-scale and high-resolution survey of methane sources in the Permian. We find an unexpectedly large number of extreme point sources (37 plumes with emission rates >500 kg hour-1), which account for a range between 31 and 53% of the estimated emissions in the sampled area. Our analysis reveals that new facilities are major emitters in the area, often due to inefficient flaring operations (20% of detections). These results put current practices into question and are relevant to guide emission reduction efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...