Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 186: 117139, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38823567

RESUMO

This study sought to further develop and validate a previously proposed physics-based model that maps denaturation kinetics from differential scanning calorimetry (DSC) to the isometric tension generated during hydrothermal isometric tension (HIT) testing of collagenous tissues. The primary objectives of this study were to verify and validate two physics-based model parameters: α, which indicates the amount of instantaneous isometric tension developed per unit of collagen denaturation, and ß, which captures the proportionality between temperature and the generated isometric tension post denaturation initiation. These parameters were used as measures of bone collagen quality, employing data from HIT and DSC testing of human bone collagen from two previous studies. Additionally, given the physical basis of the model, the study aimed to further validate Max.Slope, the rate of change in isometric tensile stress with change in temperature, as an independent measure of collagen network connectivity. Max.Slope has previously been positively correlated with measures of cortical bone fracture resistance. Towards this verification and validation, the hypotheses were a) that α would correlate strongly with HIT denaturation temperature, Td, and the enthalpy of melting (ΔH) from DSC, and b) that ß would correlate positively and strongly with Max.Slope. The model was employed in the analysis of HIT-DSC data from the testing of demineralized bone collagen isolated from cadaveric human femurs in two prior studies. In one study, data were collected from HIT-DSC testing of cortical bone collagen from 74 donors. Among them, 38 had a history of type 2 diabetes +/- chronic kidney disease, while the remaining 36 had no history of T2D again with or without CKD. Cortical bone specimens were extracted from the lateral mid-shaft. The second study involved 15 donor femora, with four cortical bone specimens extracted from each. Of these four, two specimens underwent a 4-week incubation in 0.1 M ribose at 37 °C to induce non-enzymatic ribation and advanced glycation endproducts, while the other two served as non-ribated controls. The examination involved investigating correlations between the model parameters α and ß and various measures, such as Max.Slope, Td, ΔH, age, and duration of type 2 diabetes. The results revealed positive correlations between the model parameter ß and Max.Slope (r = 0.55-0.58). The parameter α was found to be associated with Td, but also sensitive to the shape of the HIT curve around Td resulting in difficulties with variability and interpretation. As a result, while both hypotheses are confirmed, Max.Slope and ß are better indicators of bone collagen quality because they are measures of the connectivity or, more generally, the integrity of the bone collagen network.


Assuntos
Colágeno , Diabetes Mellitus Tipo 2 , Humanos , Colágeno/metabolismo , Colágeno/química , Diabetes Mellitus Tipo 2/metabolismo , Osso e Ossos/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Modelos Lineares , Varredura Diferencial de Calorimetria , Idoso , Contração Isométrica/fisiologia , Temperatura , Modelos Biológicos , Resistência à Tração
2.
Curr Osteoporos Rep ; 21(3): 253-265, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37101058

RESUMO

PURPOSE OF REVIEW: This review surveys recent literature related to cortical bone fracture mechanics and its application towards understanding bone fragility and hip fractures. RECENT FINDINGS: Current clinical tools for hip fracture risk assessment have been shown to be insensitive in some cases of elevated fracture risk leading to the question of what other factors account for fracture risk. The emergence of cortical bone fracture mechanics has thrown light on other factors at the tissue level that are important to bone fracture resistance and therefore assessment of fracture risk. Recent cortical bone fracture toughness studies have shown contributions from the microstructure and composition towards cortical bone fracture resistance. A key component currently overlooked in the clinical evaluation of fracture risk is the importance of the organic phase and water to irreversible deformation mechanisms that enhance the fracture resistance of cortical bone. Despite recent findings, there is an incomplete understanding of which mechanisms lead to the diminished contribution of the organic phase and water to the fracture toughness in aging and bone-degrading diseases. Notably, studies of the fracture resistance of cortical bone from the hip (specifically the femoral neck) are few, and those that exist are mostly consistent with studies of bone tissue from the femoral diaphysis. Cortical bone fracture mechanics highlights that there are multiple determinants of bone quality and therefore fracture risk and its assessment. There is still much more to learn concerning the tissue-level mechanisms of bone fragility. An improved understanding of these mechanisms will allow for the development of better diagnostic tools and therapeutic measures for bone fragility and fracture.


Assuntos
Doenças Ósseas , Fraturas do Quadril , Humanos , Densidade Óssea , Fraturas do Quadril/epidemiologia , Colo do Fêmur , Água , Medição de Risco
3.
J Mech Behav Biomed Mater ; 125: 104916, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717118

RESUMO

Collagen is the most abundant structural protein in the animal kingdom. Its thermal and thermomechanical properties are often measured using differential scanning calorimetry (DSC) and hydrothermal isometric tension (HIT) tests, respectively. In living tissues, not all collagenous structures (molecules, fibrils, etc.) have the same "quality," and the heterogeneity among these structures in specific tissues increases with remodeling, aging, and/or disease states. In this paper, first, a peak-fitting analysis is carried out to separate and distinguish the sequential denaturation events in a DSC endotherm, which presumably stem from heterogeneity in the collagen fibrils. The fitting analysis uses one of two functions: a Gaussian function or a function proposed by Miles. The individual endotherms were then convolved with a physics-based parametric function, J(T), proposed by the authors, to model the development of the isometric tension in two stages: 1) tension development due to a sudden increase in conformational entropy as each collagen packet denatures, and 2) additional isometric tension development due to increasing temperature, consistent with rubber thermo-elasticity. The proposed function parameters were then found by fitting to actual HIT curves using a global optimization technique. This model provides a decoupling of the effects of denaturation kinetics and collagen network connectivity and therefore an improved interpretation of HIT test results during the temperature ramp from ambient temperature to 90 °C. The simple model outputs are two parameters, α and ß, that have physical meaning and aid in assessing collagenous tissue quality in terms of connectivity and integrity.


Assuntos
Colágeno , Animais , Varredura Diferencial de Calorimetria , Cinética , Modelos Lineares , Temperatura
4.
J Biomech Eng ; 139(8)2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28614573

RESUMO

Tumor growth being a multistage process has been investigated from different aspects. In the present study, an attempt is made to represent a constitutive-structure-based model of avascular tumor growth in which the effects of tensile stresses caused by collagen fibers are considered. Collagen fibers as a source of anisotropy in the structure of tissue are taken into account using a continuous fiber distribution formulation. To this end, a finite element modeling is implemented in which a neo-Hookean hyperelastic material is assigned to the tumor and its surrounding host. The tumor is supplied with a growth term. The growth term includes the effect of parameters such as nutrient concentration on the tumor growth and the tumor's solid phase content in the formulation. Results of the study revealed that decrease of solid phase is indicative of decrease in growth rate and the final steady-state value of tumor's radius. Moreover, fiber distribution affects the final shape of the tumor, and it could be used to control the shape and geometry of the tumor in complex morphologies. Finally, the findings demonstrated that the exerted stresses on the tumor increase as time passes. Compression of tumor cells leads to the reduction of tumor growth rate until it gradually reaches an equilibrium radius. This finding is in accordance with experimental data. Hence, this formulation can be deployed to evaluate both the residual stresses induced by growth and the mechanical interactions with the host tissue.


Assuntos
Análise de Elementos Finitos , Neoplasias/patologia , Estresse Mecânico , Proliferação de Células , Modelos Biológicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...