Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 9(1): 303-311, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739025

RESUMO

Here we present a method to extract thermodynamic quantities for nanoparticle dispersions in solvents. The method is based on the study of tomograms obtained from cryogenic electron tomography (cryoET). The approach is demonstrated for gold nanoparticles (diameter < 5 nm). Tomograms are reconstructed from tilt-series 2D images. Once the three-dimensional (3D) coordinates for the centres of mass of all of the particles in the sample are determined, we calculate the pair distribution function g(r) and the potential of mean force U(r) without any assumption. Importantly, we show that further quantitative information from 3D tomograms is readily available as the spatial fluctuation in the particles' position can be efficiently determined. This in turn allows for the prompt derivation of the Kirkwood-Buff integrals with all their associated quantities such as the second virial coefficient. Finally, the structure factor and the agglomeration states of the particles are evaluated directly. These thermodynamic quantities provide key insights into the dispersion properties of the particles. The method works well both for dispersed systems containing isolated particles and for systems with varying degrees of agglomerations.


Assuntos
Tomografia com Microscopia Eletrônica , Nanopartículas Metálicas , Tomografia com Microscopia Eletrônica/métodos , Ouro/química , Nanopartículas Metálicas/química , Solventes/química , Termodinâmica
2.
Artif Cells Nanomed Biotechnol ; 48(1): 46-52, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31852275

RESUMO

Many malignant cancers have an increased demand for lipoprotein due to the requirement for lipids for the rapid proliferation of the tumours and which is met by the increased availability of LDL through upregulation of LDL transporters. This unique phenomenon is the basis for the use of LDL based nanoparticles for cell imaging. In this study, a novel MR-active LDL nanoparticle was synthesised as the MRI probes. This MR-active LDL was characterised by using different techniques including scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier-transform infra-red spectroscopy (FTIR) and magnetic resonance imaging (MRI). The intracellular uptake of Gd3+ and cytotoxicity was measured by ICP-AES and MTT assay respectively. Results suggest that this nanoprobe with spherical shape and size of 55 nm has reduced relaxation time compared to commercial contrast agent and is introduced as an appropriate imaging probe. The amount of reabsorption of nanoprobe increased up to 6 h and given that the connection of the chelator does not have an effect on reabsorption proves that entry through transporter of APO section has done. This study lays the basis for exploring a personalised medicine strategy by directing a patient's own LDL to cancer cell imaging in the early stages.


Assuntos
Neoplasias da Mama/patologia , Lipoproteínas LDL/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Transporte Biológico , Fenômenos Químicos , Humanos , Espaço Intracelular/metabolismo , Células MCF-7 , Nanopartículas/metabolismo , Nanopartículas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...