Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 18161, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307420

RESUMO

The aim was to study the performance of the U-SPECT6/CT E-class system for preclinical imaging, to later demonstrate the viability of simultaneous multi-animal and multi-isotope imaging with reliable quantitative accuracy. The performance of the SPECT was evaluated for two collimators dedicated for mouse (UHS-M) and rat imaging (UHR-RM) in terms of sensitivity, energy resolution, uniformity and spatial resolution. Point sources, hot­rod and uniform phantoms were scanned, and additional tests were carried out to evaluate singular settings such as simultaneous multi-isotope acquisition and imaging with a multi-bed system. For in-vivo evaluation, simultaneous triple-isotope and multi-animal studies were performed on mice. Sensitivity for 99mTc was 2370 cps/MBq for the UHS-M collimator and 493 cps/MBq for the UHR-RM. Rods of 0.6 mm and 0.9 mm were discernible with the UHS-M and UHR-RM collimators respectively, with optimized reconstruction. Uniformity in low counting conditions has proven to be poor (> 75%). Multi-isotope and multi-bed phantom acquisitions demonstrated accurate quantification. In mice, simultaneous multi-isotope imaging provided the separate distribution of 3 tracers and image quality of the multi-mouse bone scan was adequate. The U-SPECT6/CT E-class has shown good sensitivity and spatial resolution. This system provides quantitative images with suitable image quality for multi-mouse and multi-isotope acquisitions.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Animais , Ratos , Camundongos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Imagens de Fantasmas , Cintilografia , Isótopos , Processamento de Imagem Assistida por Computador
3.
Front Oncol ; 12: 882476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692801

RESUMO

The aim of this work is to present a reproducible methodology for the evaluation of total equivalent doses in organs during proton therapy facilities. The methodology is based on measuring the dose equivalent in representative locations inside an anthropomorphic phantom where photon and neutron dosimeters were inserted. The Monte Carlo simulation was needed for obtaining neutron energy distribution inside the phantom. The methodology was implemented for a head irradiation case in the passive proton beam of iThemba Labs (South Africa). Thermoluminescent dosimeter (TLD)-600 and TLD-700 pairs were used as dosimeters inside the phantom and GEANT code for simulations. In addition, Bonner sphere spectrometry was performed inside the treatment room to obtain the neutron spectra, some relevant neutron dosimetric quantities per treatment Gy, and a percentual distribution of neutron fluence and ambient dose equivalent in four energy groups, at two locations. The neutron spectrum at one of those locations was also simulated so that a reasonable agreement between simulation and measurement allowed a validation of the simulation. Results showed that the total out-of-field dose equivalent inside the phantom ranged from 1.4 to 0.28 mSv/Gy, mainly due to the neutron contribution and with a small contribution from photons, 10% on average. The order of magnitude of the equivalent dose in organs was similar, displaying a slow reduction in values as the organ is farther from the target volume. These values were in agreement with those found by other authors in other passive beam facilities under similar irradiation and measurement conditions.

4.
Phys Med ; 84: 1-9, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33799056

RESUMO

PURPOSE: To investigate within phantoms the minimum CT dose allowed for accurate attenuation correction of PET data and to quantify the effective dose reduction when a CT for this purpose is incorporated in the clinical setting. METHODS: The NEMA image quality phantom was scanned within a large parallelepiped container. Twenty-one different CT images were acquired to correct attenuation of PET raw data. Radiation dose and image quality were evaluated. Thirty-one patients with proven multiple myeloma who underwent a dual tracer PET/CT scan were retrospectively reviewed. 18F-fluorodeoxyglucose PET/CT included a diagnostic whole-body low dose CT (WBLDCT: 120 kV-80mAs) and 11C-Methionine PET/CT included a whole-body ultra-low dose CT (WBULDCT) for attenuation correction (100 kV-40mAs). Effective dose and image quality were analysed. RESULTS: Only the two lowest radiation dose conditions (80 kV-20mAs and 80 kV-10mAs) produced artifacts in CT images that degraded corrected PET images. For all the other conditions (CTDIvol ≥ 0.43 mGy), PET contrast recovery coefficients varied less than ± 1.2%. Patients received a median dose of 6.4 mSv from diagnostic CT and 2.1 mSv from the attenuation correction CT. Despite the worse image quality of this CT, 94.8% of bone lesions were identifiable. CONCLUSION: Phantom experiments showed that an ultra-low dose CT can be implemented in PET/CT procedures without any noticeable degradation in the attenuation corrected PET scan. The replacement of the standard CT for this ultra-low dose CT in clinical PET/CT scans involves a significant radiation dose reduction.


Assuntos
Mieloma Múltiplo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Artefatos , Humanos , Mieloma Múltiplo/diagnóstico por imagem , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
5.
Rep Pract Oncol Radiother ; 23(4): 251-259, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29991929

RESUMO

The aim of this work was to estimate peripheral neutron and photon doses associated with the conventional 3D conformal radiotherapy techniques in comparison to modern ones such as Intensity modulated radiation therapy and volumetric modulated arc therapy. Assessment in terms of second cancer incidence ought to peripheral doses was also considered. For that, a dosimetric methodology proposed by the authors has been applied beyond the region where there is no CT information and, thus, treatment planning systems do not calculate and where, nonetheless, about one third of second primary cancers occurs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...