Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 512024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38687848

RESUMO

Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.


Assuntos
Flores , Polinização , Flores/genética , Flores/crescimento & desenvolvimento , Magnoliopsida/genética , Magnoliopsida/fisiologia , Regulação da Expressão Gênica de Plantas , Pólen/genética
2.
Plant Biotechnol J ; 20(7): 1285-1297, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35258172

RESUMO

Allele-specific expression (ASE) can lead to phenotypic diversity and evolution. However, the mechanisms regulating ASE are not well understood, particularly in woody perennial plants. In this study, we investigated ASE genes in the apple cultivar 'Royal Gala' (RG). A high quality chromosome-level genome was assembled using a homozygous tetra-haploid RG plant, derived from anther cultures. Using RNA-sequencing (RNA-seq) data from RG flower and fruit tissues, we identified 2091 ASE genes. Compared with the haploid genome of 'Golden Delicious' (GD), a parent of RG, we distinguished the genomic sequences between the two alleles of 817 ASE genes, and further identified allele-specific presence of a transposable element (TE) in the upstream region of 354 ASE genes. These included MYB110a that encodes a transcription factor regulating anthocyanin biosynthesis. Interestingly, another ASE gene, MYB10 also showed an allele-specific TE insertion and was identified using genome data of other apple cultivars. The presence of the TE insertion in both MYB genes was positively associated with ASE and anthocyanin accumulation in apple petals through analysis of 231 apple accessions, and thus underpins apple flower colour evolution. Our study demonstrated the importance of TEs in regulating ASE on a genome-wide scale and presents a novel method for rapid identification of ASE genes and their regulatory elements in plants.


Assuntos
Malus , Alelos , Antocianinas , Cor , Elementos de DNA Transponíveis , Flores/genética , Flores/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Malus/metabolismo , Proteínas de Plantas/genética
3.
Hortic Res ; 8(1): 233, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719690

RESUMO

The Rosaceae family has striking phenotypic diversity and high syntenic conservation. Gillenia trifoliata is sister species to the Maleae tribe of apple and ~1000 other species. Gillenia has many putative ancestral features, such as herb/sub-shrub habit, dry fruit-bearing and nine base chromosomes. This coalescence of ancestral characters in a phylogenetically important species, positions Gillenia as a 'rosetta stone' for translational science within Rosaceae. We present genomic and phenological resources to facilitate the use of Gillenia for this purpose. The Gillenia genome is the first fully annotated chromosome-level assembly with an ancestral genome complement (x = 9), and with it we developed an improved model of the Rosaceae ancestral genome. MADS and NAC gene family analyses revealed genome dynamics correlated with growth and reproduction and we demonstrate how Gillenia can be a negative control for studying fleshy fruit development in Rosaceae.

4.
Plant Cell Environ ; 43(4): 819-835, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31834629

RESUMO

Kiwifruit (Actinidia spp.) is a recently domesticated fruit crop with several novel-coloured cultivars being developed. Achieving uniform fruit flesh pigmentation in red genotypes is challenging. To investigate the cause of colour variation between fruits, we focused on a red-fleshed Actinidia chinensis var. chinensis genotype. It was hypothesized that carbohydrate supply could be responsible for this variation. Early in fruit development, we imposed high or low (carbon starvation) carbohydrate supplies treatments; carbohydrate import or redistribution was controlled by applying a girdle at the shoot base. Carbon starvation affected fruit development as well as anthocyanin and carbohydrate metabolite concentrations, including the signalling molecule trehalose 6-phosphate. RNA-Seq analysis showed down-regulation of both gene-encoding enzymes in the anthocyanin and carbohydrate biosynthetic pathways. The catalytic trehalose 6-phosphate synthase gene TPS1.1a was down-regulated, whereas putative regulatory TPS7 and TPS11 were strongly up-regulated. Unexpectedly, under carbon starvation MYB10, the anthocyanin pathway regulatory activator was slightly up-regulated, whereas MYB27 was also up-regulated and acts as a repressor. To link these two metabolic pathways, we propose a model where trehalose 6-phosphate and the active repressor MYB27 are involved in sensing the carbon starvation status. This signals the plant to save resources and reduce the production of anthocyanin in fruits.


Assuntos
Actinidia/metabolismo , Antocianinas/metabolismo , Metabolismo dos Carboidratos , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Fosfatos Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Trealose/análogos & derivados , Actinidia/genética , Carbono/deficiência , Perfilação da Expressão Gênica , Genes de Plantas/genética , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Nicotiana/metabolismo , Fatores de Transcrição/genética , Trealose/metabolismo
5.
J Exp Bot ; 70(21): 6085-6099, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31408160

RESUMO

In apple (Malus×domestica) fruit, the different layers of the exocarp (cuticle, epidermis, and hypodermis) protect and maintain fruit integrity, and resist the turgor-driven expansion of the underlying thin-walled cortical cells during growth. Using in situ immunolocalization and size exclusion epitope detection chromatography, distinct cell type differences in cell wall composition in the exocarp were revealed during apple fruit development. Epidermal cell walls lacked pectic (1→4)-ß-d-galactan (associated with rigidity), whereas linear (1→5)-α-l-arabinan (associated with flexibility) was exclusively present in the epidermal cell walls in expanding fruit and then appeared in all cell types during ripening. Branched (1→5)-α-l-arabinan was uniformly distributed between cell types. Laser capture microdissection and RNA sequencing (RNA-seq) were used to explore transcriptomic differences controlling cell type-specific wall modification. The RNA-seq data indicate that the control of cell wall composition is achieved through cell-specific gene expression of hydrolases. In epidermal cells, this results in the degradation of galactan side chains by possibly five ß-galactosidases (BGAL2, BGAL7, BGAL10, BGAL11, and BGAL103) and debranching of arabinans by α-arabinofuranosidases AF1 and AF2. Together, these results demonstrate that flexibility and rigidity of the different cell layers in apple fruit during development and ripening are determined, at least in part, by the control of cell wall pectin remodelling.


Assuntos
Parede Celular/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Malus/genética , Pectinas/metabolismo , Parede Celular/química , Parede Celular/genética , Epitopos/metabolismo , Frutas/crescimento & desenvolvimento , Galactanos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Malus/crescimento & desenvolvimento , Peso Molecular , Epiderme Vegetal/metabolismo , Polissacarídeos/metabolismo , Solubilidade , Transcriptoma/genética
6.
Plant Direct ; 2(4): e00051, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31245717

RESUMO

Fruit shape represents a key trait that consumers use to identify and select preferred cultivars, and although the manipulation of this trait is an opportunity to create novel, differentiated products, the molecular mechanisms regulating fruit shape are poorly understood in tree fruits. In this study, we have shown that ectopic expression of Malus domestica PISTILLATA (MdPI), the apple ortholog of the floral organ identity gene PISTILLATA (PI), regulates apple fruit tissue growth and shape. MdPI is a single-copy gene, and its expression is high during flower development but barely detectable soon after pollination. Transgenic apple plants with ectopic expression of MdPI produced flowers with white sepals and a conversion of sepals to petals. Interestingly, these plants produced distinctly flattened fruit as a consequence of reduced cell growth at the basipetal position of the fruit. These altered sepal and fruit phenotypes have not been observed in studies using Arabidopsis. This study using apple has advanced our understanding of PI functions outside the control of petal and stamen identity and provided molecular genetic information useful for manipulating fruit tissue growth and fruit shape.

7.
Plant Cell Physiol ; 55(5): 1005-16, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24553848

RESUMO

In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.


Assuntos
Parede Celular/genética , Etilenos/farmacologia , Frutas/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malus/genética , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Western Blotting , Parede Celular/metabolismo , Relação Dose-Resposta a Droga , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Malus/crescimento & desenvolvimento , Malus/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
8.
AoB Plants ; 5: pls047, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23346344

RESUMO

BACKGROUND AND AIMS: Fruit ripening is an important developmental trait in fleshy fruits, making the fruit palatable for seed dispersers. In some fruit species, there is a strong association between auxin concentrations and fruit ripening. We investigated the relationship between auxin concentrations and the onset of ethylene-related ripening in Malus × domestica (apples) at both the hormone and transcriptome levels. METHODOLOGY: Transgenic apples suppressed for the SEPALLATA1/2 (SEP1/2) class of gene (MADS8/9) that showed severely reduced ripening were compared with untransformed control apples. In each apple type, free indole-3-acetic acid (IAA) concentrations were measured during early ripening. The changes observed in auxin were assessed in light of global changes in gene expression. PRINCIPAL RESULTS: It was found that mature MADS8/9-suppressed apples had a higher concentration of free IAA. This was associated with increased expression of the auxin biosynthetic genes in the indole-3-acetamide pathway. Additionally, in the MADS8/9-suppressed apples, there was less expression of the GH3 auxin-conjugating enzymes. A number of genes involved in the auxin-regulated transcription (AUX/IAA and ARF classes of genes) were also observed to change in expression, suggesting a mechanism for signal transduction at the start of ripening. CONCLUSIONS: The delay in ripening observed in MADS8/9-suppressed apples may be partly due to high auxin concentrations. We propose that, to achieve low auxin associated with fruit maturation, the auxin homeostasis is controlled in a two-pronged manner: (i) by the reduction in biosynthesis and (ii) by an increase in auxin conjugation. This is associated with the change in expression of auxin-signalling genes and the up-regulation of ripening-related genes.

9.
Plant J ; 73(6): 1044-56, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23236986

RESUMO

Flowering plants utilize different floral structures to develop flesh tissue in fruits. Here we show that suppression of the homeologous SEPALLATA1/2-like genes MADS8 and MADS9 in the fleshy fruit apple (Malus x domestica) leads to sepaloid petals and greatly reduced fruit flesh. Immunolabelling of cell-wall epitopes and differential staining showed that the developing hypanthium (from which the apple flesh develops) of MADS8/9-suppressed apple flowers lacks a tissue layer, and the remaining flesh tissue of fully developed apples has considerably smaller cells. From these observations, it is proposed that MADS8 and MADS9 control the development of discrete zones within the hypanthium tissue, and therefore fruit flesh, and also act as foundations for development of different floral organs. At fruit maturity, the MADS8/9-suppressed apples do not ripen in terms of both developmentally controlled ripening characters, such as starch degradation, and ethylene-modulated ripening traits. Transient assays suggest that, like the RIN gene in tomato, the MADS9 gene acts as a transcriptional activator of the ethylene biosynthesis enzyme, 1-aminocyclopropane-1-carboxylate (ACC) synthase 1. The existence of a single class of genes that regulate both flesh formation and ripening provides an evolutionary tool for controlling two critical aspects of fleshy fruit development.


Assuntos
Frutas/fisiologia , Malus/crescimento & desenvolvimento , Malus/genética , Proteínas de Plantas/genética , Parede Celular/imunologia , Parede Celular/metabolismo , DNA Antissenso , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Liases/genética , Liases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas
10.
AoB Plants ; 2012: pls034, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23585922

RESUMO

BACKGROUND AND AIMS: Fruit ripening in Malus× domestica (apple) is controlled by ethylene. Work in model species has shown that following the detection of ethylene, the ETHYLENE INSENSITIVE 3 (EIN3) transcription factor is stabilized, leading to an increase in transcript accumulation of ethylene-responsive genes, such as POLYGALACTURONASE1 (PG1). In the absence of ethylene, the EIN3 BINDING F-box (EBF) proteins rapidly degrade EIN3 via the ubiquitination/SCF (Skp, Cullin, F-Box) proteasome pathway. In this study, we aim to identify and characterize the apple EBF genes, and test their activity against apple EIN3-like proteins (EILs). METHODOLOGY: The apple genome sequence was mined for EBF-like genes. The expression of EBF-like genes was measured during fruit development. Using a transient assay in Nicotiana benthamiana leaves, the activity of three apple EILs was tested against the PG1 promoter, with and without ethylene and EBF1. PRINCIPAL RESULTS: Four EBF-like genes in apple were identified and grouped into two sub-clades. Sub-clade I genes had constant expression over fruit development while sub-clade II genes increased in expression at ripening. EBF1 was shown to reduce the transactivation of the apple PG1 promoter by the EIL1, EIL2 and EIL3 transcription factors in the presence of ethylene. CONCLUSIONS: The apple EBF1 gene identified here is likely to be a functionally conserved EBF orthologue, modulating EIL activity in apples. The activity of EBF1 suggests that it is not specific to a single EIL, instead acting as a global regulator of apple EIL transcription factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...