Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Nat Commun ; 12(1): 7104, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876579

RESUMO

Idiopathic pulmonary arterial hypertension (IPAH) is a rare but fatal disease diagnosed by right heart catheterisation and the exclusion of other forms of pulmonary arterial hypertension, producing a heterogeneous population with varied treatment response. Here we show unsupervised machine learning identification of three major patient subgroups that account for 92% of the cohort, each with unique whole blood transcriptomic and clinical feature signatures. These subgroups are associated with poor, moderate, and good prognosis. The poor prognosis subgroup is associated with upregulation of the ALAS2 and downregulation of several immunoglobulin genes, while the good prognosis subgroup is defined by upregulation of the bone morphogenetic protein signalling regulator NOG, and the C/C variant of HLA-DPA1/DPB1 (independently associated with survival). These findings independently validated provide evidence for the existence of 3 major subgroups (endophenotypes) within the IPAH classification, could improve risk stratification and provide molecular insights into the pathogenesis of IPAH.


Assuntos
Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , 5-Aminolevulinato Sintetase , Regulação para Baixo , Cadeias beta de HLA-DP , Humanos , Hipertensão Arterial Pulmonar
3.
Pharmaceut Med ; 35(6): 353-365, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34874534

RESUMO

BACKGROUND: Engaging influential stakeholders in meaningful exchange is essential for pharmaceutical companies aiming to improve care. At a time where opportunities for face-to-face engagement are limited, the ability to interact, learn and generate actionable insights through digital channels such as Twitter, is of considerable value. AIM: The aim of this study was to evaluate digital engagement among global diabetes mellitus researchers. MATERIALS AND METHODS: We identified every global tweet (20,614,515) and scientific publication (44,135) regarding diabetes mellitus from 1 August 2018 to 1 August 2020. Through author matching we combined datasets, resulting in a list of digitally active scientific authors. Generalised linear modelling identified factors predicting their digital engagement. FINDINGS: Globally, 2686 diabetes researchers used Twitter to discuss the management of diabetes mellitus, posting 110,346 diabetes-related tweets. As Twitter followers increased, so did tweet frequency (p < 0.001), retweets (p < 0.001) and replies (p < 0.001) to their content. Publication count (overall/per month) and proportion of first/last authorships were unrelated to tweet frequency and the likelihood of being retweeted or replied to (p > 0.05). Those with the most  academic co-authors were significantly less likely to tweet than those with smaller networks (< 50; p = 0.001). Finally, those publishing most frequently on specific themes, including insulin (p = 0.041) and paediatrics (p < 0.001), were significantly more likely to tweet about these themes. CONCLUSION: Academic expertise and seniority cannot be assumed as proxies for digital influence. Those aiming to promote science and obtain digital insights regarding condition management should consider looking beyond well-known 'key opinion leaders' to perhaps lesser known 'digital opinion leaders' with smaller academic networks, who are likely to specialise in the delivery of highly specific content to captive audiences.


Traditionally, research scientists and clinical experts in any field make their opinions and expertise known by writing academic journal papers. After successful peer review, they are accepted and made publicly available. However, during the coronavirus disease 2019 (COVID-19) pandemic, more scientific information has been shared and discussed using digital platforms such as Twitter than ever before, setting the stage for their greater role in scientific discussions in the future. It is important that the pharmaceutical industry is aware of this shift as it may offer up new insights and opportunities. Using diabetes as a test case, we compared researchers' publishing activity with their Twitter activity over a 2-year period. We found that less established researchers who are less well-known in their fields, and with less publications to their name, are far more likely to be active in sharing valuable scientific content to large Twitter audiences. This makes them 'opinion leaders' even if they would not be thought of as such in a traditional, academic sense, suggesting that those who look only to high-ranking academic journals, and those who publish within them, may be missing an important and ever-increasing part of the conversation. This is the first ever study to compare digital and traditional publishing activities and highlights the potential of this approach to gain novel and valuable knowledge about specific topics.


Assuntos
Diabetes Mellitus , Mídias Sociais , Criança , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/terapia , Humanos
4.
PLoS Pathog ; 17(7): e1009734, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310651

RESUMO

Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma congolense. In comparison to the well-studied T. brucei, there is a major paucity of knowledge regarding the biology of T. congolense. Here, we use a combination of omics technologies and novel genetic tools to characterise core metabolism in T. congolense mammalian-infective bloodstream-form parasites, and test whether metabolic differences compared to T. brucei impact upon sensitivity to metabolic inhibition. Like the bloodstream stage of T. brucei, glycolysis plays a major part in T. congolense energy metabolism. However, the rate of glucose uptake is significantly lower in bloodstream stage T. congolense, with cells remaining viable when cultured in concentrations as low as 2 mM. Instead of pyruvate, the primary glycolytic endpoints are succinate, malate and acetate. Transcriptomics analysis showed higher levels of transcripts associated with the mitochondrial pyruvate dehydrogenase complex, acetate generation, and the glycosomal succinate shunt in T. congolense, compared to T. brucei. Stable-isotope labelling of glucose enabled the comparison of carbon usage between T. brucei and T. congolense, highlighting differences in nucleotide and saturated fatty acid metabolism. To validate the metabolic similarities and differences, both species were treated with metabolic inhibitors, confirming that electron transport chain activity is not essential in T. congolense. However, the parasite exhibits increased sensitivity to inhibition of mitochondrial pyruvate import, compared to T. brucei. Strikingly, T. congolense exhibited significant resistance to inhibitors of fatty acid synthesis, including a 780-fold higher EC50 for the lipase and fatty acid synthase inhibitor Orlistat, compared to T. brucei. These data highlight that bloodstream form T. congolense diverges from T. brucei in key areas of metabolism, with several features that are intermediate between bloodstream- and insect-stage T. brucei. These results have implications for drug development, mechanisms of drug resistance and host-pathogen interactions.


Assuntos
Trypanosoma brucei brucei/metabolismo , Trypanosoma congolense/metabolismo , Animais , Reguladores do Metabolismo de Lipídeos/farmacologia , Camundongos , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Tripanossomíase Africana
5.
EBioMedicine ; 69: 103444, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34186489

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare but life shortening disease, the diagnosis of which is often delayed, and requires an invasive right heart catheterisation. Identifying diagnostic biomarkers may improve screening to identify patients at risk of PAH earlier and provide new insights into disease pathogenesis. MicroRNAs are small, non-coding molecules of RNA, previously shown to be dysregulated in PAH, and contribute to the disease process in animal models. METHODS: Plasma from 64 treatment naïve patients with PAH and 43 disease and healthy controls were profiled for microRNA expression by Agilent Microarray. Following quality control and normalisation, the cohort was split into training and validation sets. Four separate machine learning feature selection methods were applied to the training set, along with a univariate analysis. FINDINGS: 20 microRNAs were identified as putative biomarkers by consensus feature selection from all four methods. Two microRNAs (miR-636 and miR-187-5p) were selected by all methods and used to predict PAH diagnosis with high accuracy. Integrating microRNA expression profiles with their associated target mRNA revealed 61 differentially expressed genes verified in two independent, publicly available PAH lung tissue data sets. Two of seven potentially novel gene targets were validated as differentially expressed in vitro in human pulmonary artery smooth muscle cells. INTERPRETATION: This consensus of multiple machine learning approaches identified two miRNAs that were able to distinguish PAH from both disease and healthy controls. These circulating miRNA, and their target genes may provide insight into PAH pathogenesis and reveal novel regulators of disease and putative drug targets. FUNDING: This work was supported by a National Institute for Health Research Rare Disease Translational Research Collaboration (R29065/CN500) and British Heart Foundation Project Grant (PG/11/116/29288).


Assuntos
MicroRNA Circulante/sangue , Perfilação da Expressão Gênica/métodos , Hipertensão Pulmonar/sangue , Adulto , Idoso , Biomarcadores/sangue , Células Cultivadas , MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Feminino , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Aprendizado de Máquina , Masculino , MicroRNAs/sangue , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia
6.
Arterioscler Thromb Vasc Biol ; 41(1): 430-445, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147993

RESUMO

OBJECTIVE: To determine whether global reduction of CD68 (cluster of differentiation) macrophages impacts the development of experimental pulmonary arterial hypertension (PAH) and whether this reduction affects the balance of pro- and anti-inflammatory macrophages within the lung. Additionally, to determine whether there is evidence of an altered macrophage polarization in patients with PAH. Approach and Results: Macrophage reduction was induced in mice via doxycycline-induced CD68-driven cytotoxic diphtheria toxin A chain expression (macrophage low [MacLow] mice). Chimeric mice were generated using bone marrow transplant. Mice were phenotyped for PAH by echocardiography and closed chest cardiac catheterization. Murine macrophage phenotyping was performed on lungs, bone marrow-derived macrophages, and alveolar macrophages using immunohistochemical and flow cytometry. Monocyte-derived macrophages were isolated from PAH patients and healthy volunteers and polarization capacity assessed morphologically and by flow cytometry. After 6 weeks of macrophage depletion, male but not female MacLow mice developed PAH. Chimeric mice demonstrated a requirement for both MacLow bone marrow and MacLow recipient mice to cause PAH. Immunohistochemical analysis of lung sections demonstrated imbalance in M1/M2 ratio in male MacLow mice only, suggesting that this imbalance may drive the PAH phenotype. M1/M2 imbalance was also seen in male MacLow bone marrow-derived macrophages and PAH patient monocyte-derived macrophages following stimulation with doxycycline and IL (interleukin)-4, respectively. Furthermore, MacLow-derived alveolar macrophages showed characteristic differences in terms of their polarization and expression of diphtheria toxin A chain following stimulation with doxycycline. CONCLUSIONS: These data further highlight a sex imbalance in PAH and further implicate immune cells into this paradigm. Targeting imbalance of macrophage population may offer a future therapeutic option.


Assuntos
Ativação de Macrófagos , Macrófagos Alveolares/patologia , Músculo Liso Vascular/patologia , Hipertensão Arterial Pulmonar/patologia , Remodelação Vascular , Adulto , Idoso , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Estudos de Casos e Controles , Proliferação de Células , Toxina Diftérica/genética , Modelos Animais de Doenças , Feminino , Humanos , Hipóxia/complicações , Macrófagos Alveolares/metabolismo , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Comunicação Parácrina , Fragmentos de Peptídeos/genética , Fenótipo , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Fatores Sexuais
7.
Am J Respir Crit Care Med ; 202(4): 586-594, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32352834

RESUMO

Rationale: Idiopathic and heritable pulmonary arterial hypertension (PAH) are rare but comprise a genetically heterogeneous patient group. RNA sequencing linked to the underlying genetic architecture can be used to better understand the underlying pathology by identifying key signaling pathways and stratify patients more robustly according to clinical risk.Objectives: To use a three-stage design of RNA discovery, RNA validation and model construction, and model validation to define a set of PAH-associated RNAs and a single summarizing RNA model score. To define genes most likely to be involved in disease development, we performed Mendelian randomization (MR) analysis.Methods: RNA sequencing was performed on whole-blood samples from 359 patients with idiopathic, heritable, and drug-induced PAH and 72 age- and sex-matched healthy volunteers. The score was evaluated against disease severity markers including survival analysis using all-cause mortality from diagnosis. MR used known expression quantitative trait loci and summary statistics from a PAH genome-wide association study.Measurements and Main Results: We identified 507 genes with differential RNA expression in patients with PAH compared with control subjects. A model of 25 RNAs distinguished PAH with 87% accuracy (area under the curve 95% confidence interval: 0.791-0.945) in model validation. The RNA model score was associated with disease severity and long-term survival (P = 4.66 × 10-6) in PAH. MR detected an association between SMAD5 levels and PAH disease susceptibility (odds ratio, 0.317; 95% confidence interval, 0.129-0.776; P = 0.012).Conclusions: A whole-blood RNA signature of PAH, which includes RNAs relevant to disease pathogenesis, associates with disease severity and identifies patients with poor clinical outcomes. Genetic variants associated with lower SMAD5 expression may increase susceptibility to PAH.


Assuntos
Hipertensão Pulmonar Primária Familiar/sangue , Hipertensão Pulmonar Primária Familiar/genética , RNA/sangue , Adulto , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade
8.
Nat Commun ; 10(1): 5183, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729368

RESUMO

Pulmonary arterial hypertension (PAH) is a rare but fatal disease. Current treatments increase life expectancy but have limited impact on the progressive pulmonary vascular remodelling that drives PAH. Osteoprotegerin (OPG) is increased within serum and lesions of patients with idiopathic PAH and is a mitogen and migratory stimulus for pulmonary artery smooth muscle cells (PASMCs). Here, we report that the pro-proliferative and migratory phenotype in PASMCs stimulated with OPG is mediated via the Fas receptor and that treatment with a human antibody targeting OPG can attenuate pulmonary vascular remodelling associated with PAH in multiple rodent models of early and late treatment. We also demonstrate that the therapeutic efficacy of the anti-OPG antibody approach in the presence of standard of care vasodilator therapy is mediated by a reduction in pulmonary vascular remodelling. Targeting OPG with a therapeutic antibody is a potential treatment strategy in PAH.


Assuntos
Anticorpos/administração & dosagem , Hipertensão Pulmonar Primária Familiar/tratamento farmacológico , Osteoprotegerina/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Osteoprotegerina/genética , Ligação Proteica , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Wistar , Remodelação Vascular/efeitos dos fármacos
9.
Circulation ; 138(3): 287-304, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29431643

RESUMO

BACKGROUND: Mitotic fission is increased in pulmonary arterial hypertension (PAH), a hyperproliferative, apoptosis-resistant disease. The fission mediator dynamin-related protein 1 (Drp1) must complex with adaptor proteins to cause fission. Drp1-induced fission has been therapeutically targeted in experimental PAH. Here, we examine the role of 2 recently discovered, poorly understood Drp1 adapter proteins, mitochondrial dynamics protein of 49 and 51 kDa (MiD49 and MiD51), in normal vascular cells and explore their dysregulation in PAH. METHODS: Immunoblots of pulmonary artery smooth muscle cells (control, n=6; PAH, n=8) and immunohistochemistry of lung sections (control, n=6; PAH, n=6) were used to assess the expression of MiD49 and MiD51. The effects of manipulating MiDs on cell proliferation, cell cycle, and apoptosis were assessed in human and rodent PAH pulmonary artery smooth muscle cells with flow cytometry. Mitochondrial fission was studied by confocal imaging. A microRNA (miR) involved in the regulation of MiD expression was identified using microarray techniques and in silico analyses. The expression of circulatory miR was assessed with quantitative reverse transcription-polymerase chain reaction in healthy volunteers (HVs) versus patients with PAH from Sheffield, UK (plasma: HV, n=29, PAH, n=27; whole blood: HV, n=11, PAH, n=14) and then confirmed in a cohort from Beijing, China (plasma: HV, n=19, PAH, n=36; whole blood: HV, n=20, PAH, n=39). This work was replicated in monocrotaline and Sugen 5416-hypoxia, preclinical PAH models. Small interfering RNAs targeting MiDs or an miR mimic were nebulized to rats with monocrotaline-induced PAH (n=4-10). RESULTS: MiD expression is increased in PAH pulmonary artery smooth muscle cells, which accelerates Drp1-mediated mitotic fission, increases cell proliferation, and decreases apoptosis. Silencing MiDs (but not other Drp1 binding partners, fission 1 or mitochondrial fission factor) promotes mitochondrial fusion and causes G1-phase cell cycle arrest through extracellular signal-regulated kinases 1/2- and cyclin-dependent kinase 4-dependent mechanisms. Augmenting MiDs in normal cells causes fission and recapitulates the PAH phenotype. MiD upregulation results from decreased miR-34a-3p expression. Circulatory miR-34a-3p expression is decreased in both patients with PAH and preclinical models of PAH. Silencing MiDs or augmenting miR-34a-3p regresses experimental PAH. CONCLUSIONS: In health, MiDs regulate Drp1-mediated fission, whereas in disease, epigenetic upregulation of MiDs increases mitotic fission, which drives pathological proliferation and apoptosis resistance. The miR-34a-3p-MiD pathway offers new therapeutic targets for PAH.


Assuntos
GTP Fosfo-Hidrolases/genética , Hipertensão Pulmonar/genética , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Miócitos de Músculo Liso/fisiologia , Fatores de Alongamento de Peptídeos/genética , Artéria Pulmonar/patologia , Telangiectasia/congênito , Animais , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Dinaminas , Epigênese Genética , Humanos , MicroRNAs/genética , Dinâmica Mitocondrial , Ligação Proteica , Hipertensão Arterial Pulmonar , RNA Interferente Pequeno/genética , Ratos , Telangiectasia/genética
10.
Pulm Circ ; 7(4): 768-776, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828907

RESUMO

Bone morphogenetic protein receptor type 2 (BMPR2) mutations are present in patients with heritable and idiopathic pulmonary arterial hypertension (PAH). Circulating levels of interleukin-1 (IL-1) are raised in patients and animal models. Whether interplay between BMP and IL-1 signaling can explain the local manifestation of PAH in the lung remains unclear. Cell culture, siRNA, and mRNA microarray analysis of RNA isolated from human pulmonary artery (PASMC) and aortic (AoSMC) smooth muscle cells were used. R899X+/- BMPR2 transgenic mice fed a Western diet for six weeks were given daily injections of IL-1ß prior to assessment for PAH and tissue collection. PASMC have reduced inflammatory activation in response to IL-1ß compared with AoSMCs; however, PASMC with reduced BMPR2 demonstrated an exaggerated response. Mice treated with IL-1ß had higher white blood cell counts and significantly raised serum protein levels of IL-6 and osteoprotegerin (OPG) plasma levels recapitulating in vitro data. Phenotypically, IL-1ß treated mice demonstrated increased pulmonary vascular remodeling. IL-1ß induces an exaggerated pulmonary artery specific transcriptomic inflammatory response when BMPR2 signaling is reduced.

11.
J Clin Invest ; 126(7): 2495-508, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27214554

RESUMO

Loss of the growth-suppressive effects of bone morphogenetic protein (BMP) signaling has been demonstrated to promote pulmonary arterial endothelial cell dysfunction and induce pulmonary arterial smooth muscle cell (PASMC) proliferation, leading to the development of pulmonary arterial hypertension (PAH). MicroRNAs (miRs) mediate higher order regulation of cellular function through coordinated modulation of mRNA targets; however, miR expression is altered by disease development and drug therapy. Here, we examined treatment-naive patients and experimental models of PAH and identified a reduction in the levels of miR-140-5p. Inhibition of miR-140-5p promoted PASMC proliferation and migration in vitro. In rat models of PAH, nebulized delivery of miR-140-5p mimic prevented the development of PAH and attenuated the progression of established PAH. Network and pathway analysis identified SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1) as a key miR-140-5p target and regulator of BMP signaling. Evaluation of human tissue revealed that SMURF1 is increased in patients with PAH. miR-140-5p mimic or SMURF1 knockdown in PASMCs altered BMP signaling, further supporting these factors as regulators of BMP signaling. Finally, Smurf1 deletion protected mice from PAH, demonstrating a critical role in disease development. Together, these studies identify both miR-140-5p and SMURF1 as key regulators of disease pathology and as potential therapeutic targets for the treatment of PAH.


Assuntos
Hipertensão Pulmonar/metabolismo , MicroRNAs/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Idoso , Animais , Humanos , Hipóxia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Fenótipo , Artéria Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais
13.
Eur J Hum Genet ; 19(5): 534-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21267005

RESUMO

We report six patients with array deletions encompassing 12q14. Out of a total of 2538 array investigations carried out on children with developmental delay and dysmorphism in three diagnostic testing centres, six positive cases yielded a frequency of 1 in 423 for this deletion syndrome. The deleted region in each of the six cases overlaps significantly with previously reported cases with microdeletions of this region. The chromosomal range of the deletions extends from 12q13.3q15. In the current study, we report overlapping deletions of variable extent and size but primarily comprising chromosomal bands 12q13.3q14.1. Four of the six deletions were confirmed as de novo events. Two cases had deletions that included HMGA2, and both children had significant short stature. Neither case had osteopoikilosis despite both being deleted for LEMD3. Four cases had deletions that ended proximal to HMGA2 and all of these had much better growth. Five cases had congenital heart defects, including two with atrial septal defects, one each with pulmonary stenosis, sub-aortic stenosis and a patent ductus. Four cases had moderate delay, two had severe developmental delay and a further two had a diagnosis of autism. All six cases had significant speech delay with subtle facial dysmorphism.


Assuntos
Anormalidades Múltiplas/genética , Estatura , Deleção Cromossômica , Transtornos Cromossômicos/genética , Proteína HMGA2/genética , Adolescente , Criança , Pré-Escolar , Cromossomos Humanos Par 12/genética , Nanismo/genética , Feminino , Humanos , Masculino , Síndrome de Silver-Russell/genética , Síndrome
14.
Cell Oncol ; 31(6): 467-73, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19940362

RESUMO

BACKGROUND: Despite many published studies on ERbeta, progress towards understanding its role in breast cancer remains slow. This is largely due to discordant data between mRNA and protein studies as well as failure to take into account the biologically distinct ERbeta isoforms and their heterogeneous expression profile. METHODS: We compared expression of ERbeta1, -2 and -5 genes in HB2 and MCF-7 breast cell lines, primary breast fibroblasts (n=5) and whole tissue and laser microdissected epithelial and stromal cells obtained from 25 human breast tumours. RESULTS: Our study shows that the level of gene expression of ERbeta isoforms depends on the cell population within a given tumour and varies dramatically in different cellular compartments. This has implications for gene expression analyses and could explain some of the contradictory data published to date, rendering "grind and bind" analyses of ERbeta uninformative. CONCLUSION: With the technology now available, we suggest a more refined approach be adopted to help resolve some of the controversy surrounding ERbeta.


Assuntos
Neoplasias da Mama/genética , Receptor beta de Estrogênio/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias da Mama/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lasers , Microdissecção , Isoformas de Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo , Células Estromais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...