Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960471

RESUMO

This paper will assess the sensitivity of soil moisture anomaly (SMA) obtained from the Soil water index (SWI) product Metop ASCAT, to identify drought in Romania. The SWI data were converted from relative values (%) to absolute values (m3 m-3) using the soil porosity method. The conversion results (SM) were validated using soil moisture in situ measurements from ISMN at 5 cm depths (2015-2020). The SMA was computed based on a 10 day SWI product, between 2007 and 2020. The analysis was performed for the depths of 5 cm (near surface), 40 cm (sub surface), and 100 cm (root zone). The standardized precipitation index (SPI), land surface temperature anomaly (LST anomaly), and normalized difference vegetation index anomaly (NDVI anomaly) were computed in order to compare the extent and intensity of drought events. The best correlations between SM and in situ measurements are for the stations located in the Getic Plateau (Bacles (r = 0.797) and Slatina (r = 0.672)), in the Western Plain (Oradea (r = 0.693)), and in the Moldavian Plateau (Iasi (r = 0.608)). The RMSE were between 0.05 and 0.184. Furthermore, the correlations between the SMA and SPI, the LST anomaly, and the NDVI anomaly were significantly registered in the second half of the warm season (July-September). Due to the predominantly agricultural use of the land, the results can be useful for the management of water resources and irrigation in regions frequently affected by drought.


Assuntos
Secas , Solo , Agricultura , Romênia , Estações do Ano
2.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20200188, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32981442

RESUMO

We suggest that the unprecedented and unintended decrease of emissions of air pollutants during the COVID-19 lock-down in 2020 could lead to declining seasonal ozone concentrations and positive impacts on crop yields. An initial assessment of the potential effects of COVID-19 emission reductions was made using a set of six scenarios that variously assumed annual European and global emission reductions of 30% and 50% for the energy, industry, road transport and international shipping sectors, and 80% for the aviation sector. The greatest ozone reductions during the growing season reached up to 12 ppb over crop growing regions in Asia and up to 6 ppb in North America and Europe for the 50% global reduction scenario. In Europe, ozone responses are more sensitive to emission declines in other continents, international shipping and aviation than to emissions changes within Europe. We demonstrate that for wheat the overall magnitude of ozone precursor emission changes could lead to yield improvements between 2% and 8%. The expected magnitude of ozone precursor emission reductions during the Northern Hemisphere growing season in 2020 presents an opportunity to test and improve crop models and experimentally based exposure response relationships of ozone impacts on crops, under real-world conditions. This article is part of a discussion meeting issue 'Air quality, past present and future'.


Assuntos
Poluição do Ar/análise , Betacoronavirus , Infecções por Coronavirus/epidemiologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Ozônio/análise , Pandemias , Pneumonia Viral/epidemiologia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/prevenção & controle , Poluição do Ar/estatística & dados numéricos , COVID-19 , Monitoramento Ambiental , Europa (Continente) , Humanos , Modelos Biológicos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Ozônio/toxicidade , Medição de Risco , SARS-CoV-2 , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...