Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 19: 100603, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37009070

RESUMO

The culture of lung organoids relies on drops of basement membrane matrices. This comes with limitations, for example, concerning the microscopic monitoring and imaging of the organoids in the drops. Also, the culture technique is not easily compatible with micromanipulations of the organoids. In this study, we investigated the feasibility of the culture of human bronchial organoids in defined x-, y- and z-positions in a polymer film-based microwell array platform. The circular microwells have thin round/U-bottoms. For this, single cells are first precultured in drops of basement membrane extract (BME). After they form cell clusters or premature organoids, the preformed structures are then transferred into the microwells in a solution of 50% BME in medium. There, the structures can be cultured toward differentiated and mature organoids for several weeks. The organoids were characterized by bright-field microscopy for size growth and luminal fusion over time, by scanning electron microscopy for overall morphology, by transmission electron microscopy for the existence of microvilli and cilia, by video microscopy for beating cilia and swirling fluid, by live-cell imaging, by fluorescence microscopy for the expression of cell-specific markers and for proliferating and apoptotic cells, and by ATP measurement for extended cell viability. Finally, we demonstrated the eased micromanipulation of the organoids in the microwells by the example of their microinjection.

2.
EBioMedicine ; 81: 104132, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35779493

RESUMO

BACKGROUND: Human seasonal coronaviruses usually cause mild upper-respiratory tract infection, but severe complications can occur in specific populations. Research into seasonal coronaviruses is limited and robust experimental models are largely lacking. This study aims to establish human airway organoids (hAOs)-based systems for seasonal coronavirus infection and to demonstrate their applications in studying virus-host interactions and therapeutic development. METHODS: The infections of seasonal coronaviruses 229E, OC43 and NL63 in 3D cultured hAOs with undifferentiated or differentiated phenotypes were tested. The kinetics of virus replication and production was profiled at 33 °C and 37 °C. Genome-wide transcriptome analysis by RNA sequencing was performed in hAOs under various conditions. The antiviral activity of molnupiravir and remdesivir, two approved medications for treating COVID19, was tested. FINDINGS: HAOs efficiently support the replication and infectious virus production of seasonal coronaviruses 229E, OC43 and NL63. Interestingly, seasonal coronaviruses replicate much more efficiently at 33 °C compared to 37 °C, resulting in over 10-fold higher levels of viral replication. Genome-wide transcriptomic analyses revealed distinct patterns of infection-triggered host responses at 33 °C compared to 37 °C temperature. Treatment of molnupiravir and remdesivir dose-dependently inhibited the replication of 229E, OC43 and NL63 in hAOs. INTERPRETATION: HAOs are capable of modeling 229E, OC43 and NL63 infections. The intriguing finding that lower temperature resembling that in the upper respiratory tract favors viral replication may help to better understand the pathogenesis and transmissibility of seasonal coronaviruses. HAOs-based innovative models shall facilitate the research and therapeutic development against seasonal coronavirus infections. FUNDING: This research is supported by funding of a VIDI grant (No. 91719300) from the Netherlands Organization for Scientific Research and the Dutch Cancer Society Young Investigator Grant (10140) to Q.P., and the ZonMw COVID project (114025011) from the Netherlands Organization for Health Research and Development to R.R.


Assuntos
Tratamento Farmacológico da COVID-19 , Coronavirus Humano 229E , Infecções Respiratórias , Antivirais/farmacologia , Antivirais/uso terapêutico , Coronavirus Humano 229E/genética , Humanos , Organoides/patologia , Sistema Respiratório/patologia , Infecções Respiratórias/patologia , Estações do Ano
3.
Oncotarget ; 7(12): 13354-71, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26968811

RESUMO

GNE myopathy is an autosomal recessive muscular disorder of young adults characterized by progressive skeletal muscle weakness and wasting. It is caused by a mutation in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, which encodes a key enzyme in sialic acid biosynthesis. The mutated hypofunctional GNE is associated with intracellular accumulation of amyloid ß-peptide (Aß) in patient muscles through as yet unknown mechanisms. We found here for the first time that an experimental reduction in sialic acid favors Aß1-42 endocytosis in C2C12 myotubes, which is dependent on clathrin and heparan sulfate proteoglycan. Accordingly, Aß1-42 internalization in myoblasts from a GNE myopathy patient was enhanced. Next, we investigated signal changes triggered by Aß1-42 that may underlie toxicity. We observed that p-Akt levels are reduced in step with an increase in apoptotic markers in GNE myopathy myoblasts compared to control myoblasts. The same results were experimentally obtained when Aß1-42 was overexpressed in myotubes. Hence, we propose a novel disease mechanism whereby hyposialylation favors Aß1-42 internalization and the subsequent apoptosis in myotubes and in skeletal muscle from GNE myopathy patients.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apoptose , Miopatias Distais/patologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Mioblastos/patologia , Ácido N-Acetilneuramínico/metabolismo , Adulto , Estudos de Casos e Controles , Células Cultivadas , Miopatias Distais/metabolismo , Feminino , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...