Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Dev ; 21(5): 278-293, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31449734

RESUMO

Tooth replacement in piranhas is unusual: all teeth on one side of the head are lost as a unit, then replaced simultaneously. We used histology and microCT to examine tooth-replacement modes across carnivorous piranhas and their herbivorous pacu cousins (Serrasalmidae) and then mapped replacement patterns onto a molecular phylogeny. Pacu teeth develop and are replaced in a manner like piranhas. For serrasalmids, unilateral tooth replacement is not an "all or nothing" phenomenon; we demonstrate that both sides of the jaws have developing tooth rows within them, albeit with one side more mineralized than the other. All serrasalmids (except one) share unilateral tooth replacement, so this is not an adaptation for carnivory. All serrasalmids have interlocking teeth; piranhas interdigitate lateral tooth cusps with adjacent teeth, forming a singular saw-like blade, whereas lateral cusps in pacus clasp together. For serrasalmids to have an interlocking dentition, their teeth need to develop and erupt at the same time. We propose that interlocking mechanisms prevent tooth loss and ensure continued functionality of the feeding apparatus. Serrasalmid dentitions are ubiquitously heterodont, having incisiform and molariform dentitions reminiscent of mammals. Finally, we propose that simultaneous tooth replacement be considered as a synapomorphy for the family.


Assuntos
Evolução Biológica , Caraciformes/crescimento & desenvolvimento , Dentição , Odontogênese , Animais , Filogenia
2.
J Morphol ; 197(1): 105-126, 1988 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29890790

RESUMO

Previous studies of squamate epidermal structure have focused on either histology and ultrastructure or oberhautchen surface texture as revealed by scanning electron microscopy (SEM). Using SEM data drawn from a variety of lizard taxa (primarily iguanids, but also agamids, chamaeleonids, and scincids), as well as amphisbaenians and colubrid snakes, we relate the surfaces encountered in gross dissection of squamate skin to histologically identifiable layers, and characterize their surface structure. Only the oberhautchen bears the repeating pattern of ornamentation noted by previous authors. Because the clear layer is a perfect template of the oberhautchen surface, it is the only layer with which the oberhautchen might be confused. However, the clear layer can be identified by its tendency to curl and crack during preparation. All other surfaces encountered were relatively featureless, except for impressions left by dermal "papillae" associated with mechanoreceptors. Using a method for examining preserved specimens to determine the stage in the shedding cycle, we assess two sources of variation in epidermal surface structure: stage in the shedding cycle and wear. Examination of immature renewal-phase epidermis suggests that the oberhautchen does not mature synchronously across a single scale or across body regions. Comparing inner- and outer-generation oberhautchen in sheddingphase epidermis, we conclude that changes in surface appearance caused by natural wear fall into two categories: discrete scratches and accumulation of debris. We see no evidence of overall "buffing" on a microscopic level, though surface structure may be obscured by scratches and gouges. Many squamate taxa show a gradient from low relief surface structure on elevated regions such as keels to high relief patterns at scale edges. This gradient is not due to wear; its significance is unknown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...