Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(11): e0241740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33137168

RESUMO

SARS-CoV-2 is spreading globally with unprecedented consequences for modern societies. The early detection of infected individuals is a pre-requisite to contain the virus. Currently, purification of RNA from patient samples followed by RT-PCR is the gold standard to assess the presence of this single-strand RNA virus. However, these procedures are time consuming, require continuous supply of specialized reagents, and are prohibitively expensive in resource-poor settings. Here, we report an improved nucleic-acid-based approach to detect SARS-CoV-2 with the ability to detect as little as five viral genome equivalents. The approach delivers results without the need to purify RNA, reduces handling steps, minimizes costs, and allows evaluation by non-specialized equipment. The use of unprocessed swap samples is enabled by employing a heat-stable RNA- and DNA-dependent DNA polymerase, which performs the double task of stringent reverse transcription of RNA at elevated temperatures as well as PCR amplification of a SARS-CoV-2 specific target gene. As results are obtained within 2 hours and can be read-out by a hand-held LED-screen, this novel protocol will be of particular importance for large-scale virus surveillance in economically constrained settings.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/virologia , Humanos , Nasofaringe/virologia , Pandemias , Pneumonia Viral/virologia , RNA Viral/genética , SARS-CoV-2 , Temperatura
2.
Nat Commun ; 10(1): 3490, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375709

RESUMO

Visualization of specific organelles in tissues over background fluorescence can be challenging, especially when reporters localize to multiple structures. Instead of trying to identify proteins enriched in specific membrane-wrapped structures, we use a selective degradation approach to remove reporters from the cytoplasm or nucleus of C. elegans embryos and mammalian cells. We demonstrate specific labelling of organelles using degron-tagged reporters, including extracellular vesicles, as well as individual neighbouring membranes. These degron-tagged reporters facilitate long-term tracking of released cell debris and cell corpses, even during uptake and phagolysosomal degradation. We further show that degron protection assays can probe the topology of the nuclear envelope and plasma membrane during cell division, giving insight into protein and organelle dynamics. As endogenous and heterologous degrons are used in bacteria, yeast, plants, and animals, degron approaches can enable the specific labelling and tracking of proteins, vesicles, organelles, cell fragments, and cells in many model systems.


Assuntos
Membrana Celular/metabolismo , Vesículas Extracelulares/metabolismo , Microscopia Intravital/métodos , Coloração e Rotulagem/métodos , Animais , Caenorhabditis elegans , Embrião não Mamífero , Fluorescência , Genes Reporter/genética , Células HeLa , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteólise
3.
J Cell Sci ; 129(20): 3721-3731, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27562069

RESUMO

In animals, the midbody coordinates the end of cytokinesis when daughter cells separate through abscission. The midbody was thought to be sequestered by macroautophagy, but recent evidence suggests that midbodies are primarily released and phagocytosed. It was unknown, however, whether autophagy proteins play a role in midbody phagosome degradation. Using a protein degradation assay, we show that midbodies are released in Caenorhabditis elegans Released midbodies are known to be internalized by actin-driven phagocytosis, which we show requires the RAB-5 GTPase to localize the class III phosphoinositide 3-kinase (PI3K) complex at the cortex. Autophagy-associated proteins, including the Beclin 1 homolog BEC-1 and the Atg8/LC3-family members LGG-1 and LGG-2, localize around the midbody phagosome and are required for midbody degradation. In contrast, proteins required specifically for macroautophagy, such as UNC-51 and EPG-8 (homologous to ULK1/Atg1 and Atg14, respectively) are not required for midbody degradation. These data suggest that the C. elegans midbody is degraded by LC3-associated phagocytosis (LAP), not macroautophagy. Our findings reconcile the two prevailing models on the role of phagocytic and autophagy proteins, establishing a new non-canonical role for autophagy proteins in midbody degradation.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Embrião não Mamífero/citologia , Endocitose , Genes de Helmintos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...