Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 13(12): 3003-3013, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37365402

RESUMO

At the onset of pregnancy, people with preexisting conditions face additional challenges in carrying their pregnancy to term, as the safety of the developing fetus and pregnant person is a significant factor of concern. Nanoparticle (NP)-based therapies have displayed success against various conditions and diseases in non-pregnant patients, but the use of NPs in maternal-fetal health applications needs to be better established. Local vaginal delivery of NPs is a promising administration route with the potential to yield high cargo retention in the vagina and improved therapeutic efficacy compared to systemic administration that results in rapid NP clearance by the hepatic first-pass effect. In this study, we investigated the biodistribution and short-term toxicity of poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA) NPs in pregnant mice following vaginal delivery. The NPs were either loaded with DiD fluorophores for tracking cargo distribution (termed DiD-PEG-PLGA NPs) or included Cy5-tagged PLGA in the formulation for tracking polymer distribution (termed Cy5-PEG-PLGA NPs). DiD-PEG-PLGA NPs were administered at gestational day (E)14.5 or 17.5, and cargo biodistribution was analyzed 24 h later by fluorescence imaging of whole excised tissues and histological sections. No gestational differences in DiD distribution were observed, so Cy5-PEG-PLGA NPs were administered at only E17.5 to evaluate polymer distribution in the reproductive organs of pregnant mice. Cy5-PEG-PLGA NPs distributed to the vagina, placentas, and embryos, whereas DiD cargo was only observed in the vagina. NPs did not impact maternal, fetal, or placental weight, suggesting they display no short-term effects on maternal or fetal growth. The results from this study encourage future investigation into the use of vaginally delivered NP therapies for conditions affecting the vagina during pregnancy.


Assuntos
Nanopartículas , Ácido Poliglicólico , Gravidez , Humanos , Feminino , Camundongos , Animais , Ácido Láctico , Distribuição Tecidual , Placenta , Polietilenoglicóis , Feto , Portadores de Fármacos
2.
Nanomedicine ; 36: 102412, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147664

RESUMO

The use of nanoparticles (NPs) to deliver therapeutics to reproductive organs is an emerging approach to safely and effectively treat mothers and babies facing pregnancy complications. This study investigates the biodistribution of two different sized gold-based NPs in pregnant mice following systemic delivery as a function of gestational age. Poly(ethylene glycol)-coated 15 nm gold nanoparticles or 150 nm diameter silica core/gold nanoshells were intravenously administered to pregnant mice at gestational days (E)9.5 or 14.5. NP distribution was analyzed twenty-four hours later by inductively coupled plasma-mass spectrometry and silver staining of histological specimens. More NPs accumulated in placentas than embryos and delivery to these tissues was greater at E9.5 than E14.5. Neither NP type affected fetal weight or placental weight, indicating minimal short-term toxicity in early to mid-stage pregnancy. These findings warrant continued development of NPs as tools to deliver therapeutics to reproductive tissues safely.


Assuntos
Materiais Revestidos Biocompatíveis , Embrião de Mamíferos/metabolismo , Idade Gestacional , Ouro , Nanopartículas Metálicas , Placenta/metabolismo , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Gravidez
3.
J Mater Chem B ; 8(31): 6548-6561, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32452510

RESUMO

Pregnancy complications are commonplace and the challenges of treatment during pregnancy with few options available pose a risk to the health of both the mother and baby. Patients suffering from conditions such as preeclampsia, placenta accreta, and intrauterine growth restriction have few treatment options apart from emergency caesarean section. Fortunately, researchers are beginning to develop nanomedicine-based therapies that could be utilized to treat conditions affecting the mother, placenta, or fetus to improve the prognosis for mothers and their unborn children. This review summarizes the field's current understanding of nanoparticle biodistribution and therapeutic effect following systemic or vaginal administration and overviews the design parameters researchers should consider when developing nanomedicines for maternal/fetal health. It also describes safety considerations for nanomedicines to limit undesirable maternal or fetal side effects and discusses future work that should be performed to advance nanomedicine for maternal/fetal health. With additional development and implementation, the application of nanomedicine to treat pregnancy complications may mitigate the need for emergency caesarean sections and allow pregnancies to extend to term.


Assuntos
Materiais Biocompatíveis , Desenho de Fármacos , Feto , Mães , Nanomedicina/métodos , Nanoestruturas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Humanos , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...