Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896460

RESUMO

The fabrication of a zinc hydroxide nitrate-sodium dodecylsulfate bispyribac modified with multi-walled carbon nanotube (ZHN-SDS-BP/MWCNT) paste electrode for uric acid and bisphenol A detection was presented in this study. Electrochemical impedance spectroscopy, chronocoulometry, square-wave voltammetry, and cyclic voltammetry were all used to examine the electrocatalytic activities of modified paste electrodes. The modified electrode's sensitivity and selectivity have been considered in terms of the composition of the modifier in percentages, the types of supporting electrolytes used, the pH of the electrolyte, and square-wave voltammetry parameters like frequency, pulse size, and step increment. Square-wave voltammetry is performed by applying a small amplitude square-wave voltage to a scanning potential from -0.3 V to +1.0 V, demonstrating a quick response time and high sensitivity. The ZHN-SDS-BP/MWCNT sensor demonstrated a linear range for uric acid and bisphenol A from 5.0 µM to 0.7 mM, with a limit of detection of 0.4 µM and 0.8 µM, respectively, with good reproducibility, repeatability, and stability as well. The modified paste electrode was successfully used in the determination of uric acid and bisphenol A in samples of human urine and lake water.


Assuntos
Nanocompostos , Ácido Úrico , Humanos , Ácido Úrico/urina , Dodecilsulfato de Sódio , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Eletrodos , Nanocompostos/química , Sódio
2.
ACS Omega ; 7(49): 45654-45664, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530264

RESUMO

Residues of oxytetracycline (OTC), a veterinary antibiotic and growth promoter, can be present in animal-derived foods; their consumption is harmful to human health and their presence must therefore be detected and regulated. However, the maximum residue limit is low, and consequently highly sensitive and accurate detectors are required to detect the residues. In this study, a novel highly sensitive electrochemical sensor for the detection of OTC was developed using a screen-printed electrode modified with fluorine-doped activated carbon (F-AC/SPE) combined with a novel deep eutectic solvent (DES). The modification of activated carbon by doping with fluorine atoms (F-AC) enhanced the adsorption and electrical activity of the activated carbon. The novel hydrophobic DES was prepared from tetrabutylammonium bromide (TBABr) and a fatty acid (malonic acid) using a green synthesis method. The addition of the DES increased the electrochemical response of F-AC for OTC detection; furthermore, it induced preconcentration of OTC, which increased its detectability. The electrostatic interactions between DES and OTC as well as the adsorption of OTC on the surface of the modified electrode through H-bonding and π-π interactions helped in OTC detection, which was quantified based on the decrease in the anodic peak potential (E pa = 0.3 V) of AC. The electrochemical behavior of the modified electrode was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Under optimum conditions, the calibration plot of OTC exhibited a linear response in the range 5-1500 µg L-1, with a detection limit of 1.74 µg L-1. The fabricated electrochemical sensor was successfully applied to determine the OTC in shrimp pond and shrimp samples with recoveries of 83.8-100.5% and 93.3-104.5%, respectively. In addition to the high sensitivity of OTC detection, the proposed electrochemical sensor is simple, cost-effective, and environmentally friendly.

3.
J Anal Methods Chem ; 2022: 5029036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463191

RESUMO

In this work, a novel electrochemical sensor was developed by electron-withdrawing substituent modification of 1-phenyl-3-methyl-4-(4-fluorobenzoyl)-5-pyrazolone on a graphene-modified glassy carbon electrode (HPMpFP-graphene/GCE) for glucose detection. The results of characterizations using a scanning electron microscope, Fourier transform infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance spectroscopy showed the successful fabrication of HPMpFP-graphene nanocomposite, which served as an electroactive probe for glucose detection. The electron transfer ability of HPMpFBP-graphene/GCE has been successfully revealed using cyclic voltammetry and electrochemical impedance spectroscopy results. The good electrochemical performance was shown by well-defined peak currents of square wave voltammetry under various parameters, including pH, HPMpFP and graphene composition, and scan rate effect. A high electrochemically evaluated surface area using chronoamperometry suggested that the present glucose detection response was intensified. The chronoamperometry results at a work potential of 0.4 V presented a wide linear range of 1 × 103-90 µM and 88-1 µM with 0.74 µM (S/N = 3) as the detection limit. An acceptable recovery has been revealed in the real sample analysis. The electrochemical sensing behaviour of the composite indicates that it may be a promising candidate for a glucose sensor and it significantly extends the range of applications in the electrochemical field.

4.
Materials (Basel) ; 14(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209933

RESUMO

The objective of this study is to investigate Napa soil's potential as an alternative additive in producing Portland composite cement. The Napa soil of Tanah Datar district, West Sumatra, Indonesia is a natural material which contains SiO2 and Al2O3 as its major components. The parameters used were the fineness of the cement particles, the amount left on a 45 µm sieve, the setting time, normal consistency, loss on ignition, insoluble parts, compressive strength and chemical composition. The composition of Napa soils (% w/w) used as variables include 4, 8, 12 and 16%. Furthermore, 8% pozzolan was used as a control in this research. The results showed that the compressive strength of Napa soil cement which contained 4% Napa soil was much better compared to that of the control on the 7th and 20th day. Furthermore, all the analyzed Napa soil cements met the standard of cement as stipulated in Indonesian National Standard, SNI 7064, 2016.

5.
Mater Sci Eng C Mater Biol Appl ; 68: 465-473, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524043

RESUMO

This paper presents the fabrication of a highly sensitive and selective glucose sensor based on cuprous oxide/graphene nanocomposites-modified glassy carbon electrode (Cu2O/graphene/GCE). The Cu2O/graphene nanocomposites were synthesized based on a simple and straightforward chemical reduction process in alkaline aqueous solution using sodium carbonate as reductant. The size and shape of Cu2O nanoparticles on graphene sheets can be controlled by changing the amount of graphene oxide added during reaction. The electrochemical properties of Cu2O/graphene/GCE in 0.1M phosphate buffer solution were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. It was found that the pH, concentration of supporting electrolyte, and scan rate had very crucial effect on the sensitivity of prepared sensor towards glucose oxidation. At an applied potential of +0.50V, the Cu2O/graphene/GCE presented a high sensitivity of 1330.05µAmM(-1)cm(-2) and fast response (within 3s). The amperometric non-enzymatic glucose sensor developed had a linear relationship from 0.01mM to 3.0mM glucose and detection limit of 0.36µM. In the presence of ascorbic acid, uric acid, dopamine, chloride and citrate ion and other carbohydrates, the interferences were negligible. The proposed sensor was successfully applied for the determination of glucose concentration in real human blood samples.


Assuntos
Cobre/química , Espectroscopia Dielétrica , Glucose/análise , Grafite/química , Nanocompostos/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...