Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625878

RESUMO

The sensitivity of magnetic resonance force microscopy (MRFM) is limited by surface noise. Coating a thin-film polymer sample with metal has been shown to decrease, by orders of magnitude, sample-related force noise and frequency noise in MRFM experiments. Using both MRFM and inductively detected measurements of electron-spin resonance, we show that thermally evaporating a 12 nm gold layer on a 40 nm nitroxide-doped polystyrene film inactivates the nitroxide spin labels to a depth of 20 nm, making single-spin measurements difficult or impossible. We introduce a "laminated sample" protocol in which the gold layer is first evaporated on a sacrificial polymer. The sample is deposited on the room-temperature gold layer, removed using solvent lift-off, and placed manually on a coplanar waveguide. Electron spin resonance (ESR) of such a laminated sample was detected via MRFM at cryogenic temperatures using a high-compliance cantilever with an integrated 100-nm-scale cobalt tip. A 20-fold increase of spin signal was observed relative to a thin-film sample prepared instead with an evaporated metal coating. The observed signal is still somewhat smaller than expected, and we discuss possible remaining sources of signal loss.

2.
Rev Sci Instrum ; 89(1): 013707, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29390684

RESUMO

Aligning a microcantilever to an area of interest on a sample is a critical step in many scanning probe microscopy experiments, particularly those carried out on devices and rare, precious samples. We report a series of protocols that rapidly and reproducibly align a high-compliance microcantilever to a <10 µm sample feature under high vacuum and at cryogenic temperatures. The first set of protocols, applicable to a cantilever oscillating parallel to the sample surface, involve monitoring the cantilever resonance frequency while laterally scanning the tip to map the sample substrate through electrostatic interactions of the substrate with the cantilever. We demonstrate that when operating a cantilever a few micrometers from the sample surface, large shifts in the cantilever resonance frequency are present near the edges of a voltage-biased sample electrode. Surprisingly, these "edge-finder" frequency shifts are retained when the electrode is coated with a polymer film and a ∼10 nm thick metallic ground plane. The second series of methods, applicable to any scanning probe microscopy experiment, integrate a single-optical fiber to image line scans of the sample surface. The microscope modifications required for these methods are straightforward to implement, provide reliable micrometer-scale positioning, and decrease the experimental setup time from days to hours in a vacuum, cryogenic magnetic resonance force microscope.

3.
Phys Chem Chem Phys ; 19(24): 16282, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28597900

RESUMO

Correction for 'Dynamic nuclear polarization in a magnetic resonance force microscope experiment' by Corinne E. Isaac et al., Phys. Chem. Chem. Phys., 2016, 18, 8806-8819.

4.
Phys Chem Chem Phys ; 18(13): 8806-19, 2016 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-26964007

RESUMO

We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Microscopia/métodos , Micro-Ondas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...