Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(2): e2300455, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37633841

RESUMO

A novel method based on light-induced fabrication of a poly (3,4-ethylenedioxythiophene)-polycaprolactone (PEDOT-PCL) scaffold using phenacyl bromide (PAB) as a single-component photoinitiator is presented. HBr released from the step-growth polymerization of EDOT is utilized as an in situ catalyst for the chain-growth polymerization of ε-caprolactone. Detailed investigations disclose the formation of a self-assembled nanoporous electroconductive scaffold (1.2 mS cm-1 ). Fluorescence emission spectra of the fabricated scaffold exhibit a mixed solvatochromic behavior, indicating specific interactions between the self-assembled scaffold and solvents with varying polarities, as evidenced by transmission electron microscopy (TEM). Moreover, the same light-induced technique can also be applied for bulk photopolymerization showcasing the versatility and wide-ranging scope of the originated method. In brief, this study introduces a novel approach for light-induced polymerization reactions that is merging step-growth and chain-growth mechanisms. This innovative approach is promising to facilitate in situ polymerization of monomers possessing diverse functionalities.


Assuntos
Nanoporos , Polimerização , Microscopia Eletrônica de Transmissão , Solventes
2.
Beilstein J Org Chem ; 19: 1849-1857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090628

RESUMO

A donor-π-acceptor (D-π-A)-type pull-push compound, DMB-TT-TPA (8), comprising triphenylamine as donor and dimesitylboron as acceptor linked through a thieno[3,2-b]thiophene (TT) π-conjugated linker bearing a 4-MeOPh group, was designed, synthesized, and fabricated as an emitter via a solution process for an organic light-emitting diode (OLED) application. DMB-TT-TPA (8) exhibited absorption and emission maxima of 411 and 520 nm, respectively, with a mega Stokes shift of 109 nm and fluorescence quantum yields both in the solid state (41%) and in solution (86%). The optical properties were supported by computational chemistry using density functional theory for optimized geometry and absorption. A solution-processed OLED was fabricated using low turn-on voltage, which had performances with maximum power, current, and external quantum efficiencies of 6.70 lm/W, 10.6 cd/A, and 4.61%, respectively.

3.
Turk J Chem ; 47(5): 1239-1248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173761

RESUMO

Thieno[3,2-b]thiophene (TT) has been attracting significant attention in the field of organic electronics and optoelectronics. In this study, a useful building block of TT derivative 4-thieno[3,2-b]thiophen-3-ylbenzonitrile (4-CNPhTT), developed by our group and possessing a strong electron-withdrawing 4-CNPh moiety, is reviewed as it has been the source of the development of various organic electronic materials. Some optic and electronic properties are discussed based on electrochemical polymerization of 4-CNPhTT performed using cyclic voltammetry, and spectroelectrochemical measurements are conducted to investigate the optical variations of the polymer film upon doping. Moreover, 4-CNPhTT is clarified by scanning electron microscopy at different magnitudes ranging from 100 to 500 µm, supported by the single X-ray crystal structure. The thermal properties of 4-CNPhTT are investigated by thermal gravimetric and differential thermal analyses. All of the observed properties demonstrate that 4-CNPhTT has the potential of shedding light on the development of new materials for electronic and optoelectronic applications within the TT family.

4.
Nanoscale ; 14(44): 16602-16610, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36317494

RESUMO

Non-covalent functionalization of single wall carbon nanotubes (SWCNTs) has been conducted using several binding agents with surface π-interaction forces in recent studies. Herein, we present the first example of non-covalent functionalization of sidewalls of SWCNTs using thienothiophene (TT) derivatives without requiring any binding agents. Synthesized TT derivatives, TT-CN-TPA, TT-CN-TPA2 and TT-COOH-TPA, were attached directly to SWCNTs through non-covalent interactions to obtain new TT-based SWCNT hybrids, HYBRID 1-3. Taking advantage of the presence of sulfur atoms in the structure of TT, HYBRID 1, as a representative, was treated with Au nanoparticles for the adsorption of Au by sulfur atoms, which generated clear TEM images of the particles. The images indicated the attachment of TTs to the surface of SWCNTs. Thus, the presence of sulfur atoms in TT units made the binding of TTs to SWCNTs observable via TEM analysis through adsorption of Au nanoparticles by the sulfur atoms. Surface interactions between TTs and SWCNTs of the new hybrids were also clarified by classical molecular dynamic simulations, a quantum mechanical study, and SEM, TEM, AFM and contact angle (CA) analyses. The minimum distance between a TT and a SWCNT reached up to 3.5 Å, identified with strong peaks on a radial distribution function (RDF), while maximum interaction energies were raised to -316.89 kcal mol-1, which were determined using density functional theory (DFT).

5.
J Phys Chem B ; 125(48): 13309-13319, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34807616

RESUMO

A wide series of 10 new triphenylamine (TPA)/4,4'-dimethoxytriphenylamine (TPA(OMe)2)-functionalized thieno[3,2-b]thiophene (TT) fluorophores, 4a-e and 5a-e, bearing different electron-donating and electron-withdrawing substituents (-PhCN, -PhF, -PhOMe, -Ph, and -C6H13) at the terminal thienothiophene units were designed and synthesized by the Suzuki coupling reaction. Their optical and electrochemical properties were investigated by experimental and computational studies. Solid-state fluorescent quantum yields were recorded to be from 20 to 69%, and the maximum solution-state quantum efficiency reached 97%. Moreover, the photophysical characterization of the novel chromophores demonstrated a significant Stokes shift, reaching 179 nm with a bathochromic shift. They exhibited tuning color emission from orange to dark blue in solution and showed fluorescence lifetime reaching 4.70 ns. The relationship between triphenylamine (TPA)/4,4'-dimethoxytriphenylamine (TPA(OMe)2)-derived triarylamines and different functional groups on thieno[3,2-b] thiophene units was discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...