Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurosci ; 14: 158, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24359611

RESUMO

BACKGROUND: Insulin-like growth factor binding protein-2 (IGFBP-2) regulates the bioavailability, transportation, and localization of insulin-like growth factor-I (IGF-I), an effective neuroprotectant in animal stroke models especially when administered intranasally. Therefore, determining IGFBP-2's endogenous distribution in the normal and ischemic brain is essential in maximizing the neuroprotective potential of the intranasal IGF-I treatment approach. However, current data on IGFBP-2 is limited to mRNA and in situ hybridization studies. The purpose of this study was to determine if there are any changes in IGFBP-2 protein levels and distribution in ischemic brain and also to determine if IGFBPs play a role in the transportation of intranasally administered IGF-I into the brain. RESULTS: Using an in vitro approach, we show that ischemia causes changes in the distribution of IGFBP-2 in primary cortical neurons and astrocytes. In addition, we show using the transient middle cerebral artery occlusion (MCAO) model in mice that there is a significant increase in IGFBP-2 levels in the stroke penumbra and core after 72 h. This correlated with an overall increase in IGF-I after stroke, with the highest levels of IGF-I in the stroke core after 72 h. Brain sections from stroke mice indicate that neurons and astrocytes located in the penumbra both have increased expression of IGFBP-2, however, IGFBP-2 was not detected in microglia. We used binding competition studies to show that intranasally administered exogenous IGF-I uptake into the brain is not receptor mediated and is likely facilitated by IGFBPs. CONCLUSIONS: The change in protein levels indicates that IGFBP-2 plays an IGF-I-dependent and -independent role in the brain's acute (neuroprotection) and chronic (tissue remodeling) response to hypoxic-ischemic injury. Competition studies indicate that IGFBPs may have a role in rapid transportation of exogenous IGF-I from the nasal tissue to the site of injury.


Assuntos
Hipóxia-Isquemia Encefálica/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Administração Intranasal , Animais , Astrócitos/metabolismo , Transporte Biológico , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Fator de Crescimento Insulin-Like I/administração & dosagem , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Cultura Primária de Células , Ratos
2.
Neuroreport ; 20(6): 579-83, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19276999

RESUMO

3'-phosphoinositide-dependent protein kinase-1 (PDK-1) is a crucial serine/threonine kinase in the insulin-like growth factor-I (IGF-I)/AKT signaling pathway, but its function and localization in the nervous system has not been fully characterized. In this study, we compared the localization of PDK-1 in adult neurons and non-neuronal PC-3 cells. We showed that PC-3 cells expressed phosphorylated and nonphosphorylated PDK-1 in the cytoplasm and nucleoplasm. In contrast, neuronal PDK-1 was located in the nucleoplasm and the phosphorylated form was located along the perinuclear region. Furthermore, we found that IGF-I transiently increased phosphorylation of neuronal PDK-1, resulting in its translocation to other cellular compartments. Our findings suggest that IGF-I may regulate neuronal PDK-1 differently than in non-neuronal cells, which may indicate a novel role for PDK-1 in IGF-I-mediated neuroprotective signaling.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Citoplasma/metabolismo , Imunofluorescência , Humanos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...