Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808459

RESUMO

Cloud computing coupled with Internet of Things technology provides a wide range of cloud services such as memory, storage, computational processing, network bandwidth, and database application to the end users on demand over the Internet. More specifically, cloud computing provides efficient services such as "pay as per usage". However, Utility providers in Smart Grid are facing challenges in the design and implementation of such architecture in order to minimize the cost of underlying hardware, software, and network services. In Smart Grid, smart meters generate a large volume of different traffics, due to which efficient utilization of available resources such as buffer, storage, limited processing, and bandwidth is required in a cost-effective manner in the underlying network infrastructure. In such context, this article introduces a QoS-aware Hybrid Queue Scheduling (HQS) model that can be seen over the IoT-based network integrated with cloud environment for different advanced metering infrastructure (AMI) application traffic, which have different QoS levels in the Smart Grid network. The proposed optimization model supports, classifies, and prioritizes the AMI application traffic. The main objective is to reduce the cost of buffer, processing power, and network bandwidth utilized by AMI applications in the cloud environment. For this, we developed a simulation model in the CloudSim simulator that uses a simple mathematical model in order to achieve the objective function. During the simulations, the effects of various numbers of cloudlets on the cost of virtual machine resources such as RAM, CPU processing, and available bandwidth have been investigated in cloud computing. The obtained simulation results exhibited that our proposed model successfully competes with the previous schemes in terms of minimizing the processing, memory, and bandwidth cost by a significant margin. Moreover, the simulation results confirmed that the proposed optimization model behaves as expected and is realistic for AMI application traffic in the Smart Grid network using cloud computing.


Assuntos
Computação em Nuvem , Sistemas Computacionais , Simulação por Computador , Modelos Teóricos , Software
2.
PLoS One ; 16(1): e0244691, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428649

RESUMO

The vertical collaborative clustering aims to unravel the hidden structure of data (similarity) among different sites, which will help data owners to make a smart decision without sharing actual data. For example, various hospitals located in different regions want to investigate the structure of common disease among people of different populations to identify latent causes without sharing actual data with other hospitals. Similarly, a chain of regional educational institutions wants to evaluate their students' performance belonging to different regions based on common latent constructs. The available methods used for finding hidden structures are complicated and biased to perform collaboration in measuring similarity among multiple sites. This study proposes vertical collaborative clustering using a bit plane slicing approach (VCC-BPS), which is simple and unique with improved accuracy, manages collaboration among various data sites. The VCC-BPS transforms data from input space to code space, capturing maximum similarity locally and collaboratively at a particular bit plane. The findings of this study highlight the significance of those particular bits which fit the model in correctly classifying class labels locally and collaboratively. Thenceforth, the data owner appraises local and collaborative results to reach a better decision. The VCC-BPS is validated by Geyser, Skin and Iris datasets and its results are compared with the composite dataset. It is found that the VCC-BPS outperforms existing solutions with improved accuracy in term of purity and Davies-Boulding index to manage collaboration among different data sites. It also performs data compression by representing a large number of observations with a small number of data symbols.


Assuntos
Análise por Conglomerados , Algoritmos , Conjuntos de Dados como Assunto , Humanos , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...